

Sytronix – variable-speed pump drives

Energy-efficient | Powerful | Cost-effective

LSA Control S.L. www.lsa-control.com comercial@lsa-control.com (+34) 960 62 43 01

Sytronix variable-speed pump drives change the game with hydraulic systems and offer new opportunities for innovative designs. Energy-efficient solutions using components matched to the application and an in-depth knowledge of the technology are key.

Investment in energy saving technology using Bosch Rexroth hydraulics can provide fast returns, with energy savings up to 80%.

Sytronix - energy-efficient variable	-
speed pump systems	4
Sytronix system overview	6
Sytronix selection guide	8
Sytronix system key	9
Sytronix FcP variable-speed pump	
drives	13
FcP 7010	15
FcP 5010	20
Sytronix SvP variable-speed pump	
drives	26
SvP 7010	28
Sytronix DFE	
variable-speed pump drives	34
DFE 7010	36
DFE 5010	39
Sytronix individual solutions	42
8 steps for a system solution	43
Selection guides	45
Components and modules	46
Motor-pump-assemblies	47
Drives	54
Motors	63
Pumps	68

76

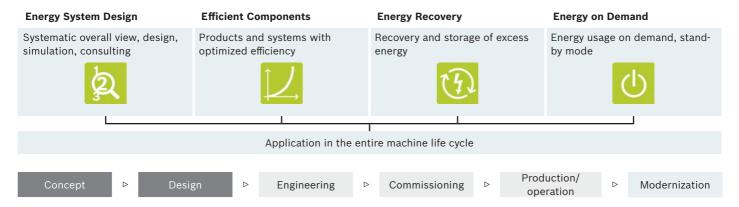
Accessories

Sytronix – energy-efficient variable-speed pump systems

Older machine designs focused on systems that had the capacity to deliver maximum performance, even though it might have only been for a fraction of the total cycle. Today there is a greater emphasis on reducing energy consumption and noise emissions. Higher energy prices and workplace environmental requirements have engineers rethinking their designs.

Using Sytronix (smart interplay of hydraulics and electronics) variable-speed pump drives can address these issues by combining the advantages of Bosch Rexroth technologies: reliability of high-performance hydraulics and energy-efficiency and dynamics of high-performance drives and electronics.

Sytronix drives combine matched electric motors, hydraulic pumps, and VFDs (variable frequency drives), which has the potential of significant energy savings and a considerable reduction in noise emissions at a cost that provides an attractive return on investment.


Energy on Demand – powerful hydraulics, intelligent control

By integrating the advantages of hydraulics with the control intelligence of electrical drives, motor speeds can be continually adjusted to match the machine's requirements. The drive speed of the pump can be lowered to an energy-efficient, quiet level when the process requires less than full performance. By having a major portion of the machine cycle time matched to the part-load requirement, energy is saved and noise is reduced.

Sytronix systems are part of Bosch Rexroth's **4EE strategy** for system energy reduction.

Rexroth for Energy Efficiency

Sytronix: efficient and versatile

To meet the requirements of pump drive systems – Sytronix systems can provide a number of key advantages:

- ► Energy savings of up to 80%
- ▶ Reduction in noise emissions by up to 20 dB (A)
- ▶ Lower investment and reduced operating costs

Sytronix advantages

Reduced energy consumption

Energy savings of up to 80% decrease operating costs and reduce CO2 emissions.

Lower noise emission

Sytronix drives can reduce the noise emission of the hydraulic power unit up to 20 dB (A). Meeting stringent noise specifications in certain market areas is easier and may be accomplished with noise control measures.

Easier installation and commissioning

Pre-configured Sytronix hydraulic pump drives and assemblies utilize matched components to provide complete pump drive systems. This results in short installation and commissioning times. Rexroth offers more than 100 drive configurations in three different performance classes.

Easier cooling

By lowering the average pump drive speed, variable-speed pump drives can significantly reduce generated heat, minimizing the cost and energy required to cool the hydraulic system.

Lower space requirements

Using Sytronix drives can lower space requirements for the hydraulic system:

- ► Compact design
- ► Simpler valve technology and reduced requirements for control electronics
- Reduced hydraulic fluid volume resulting in smaller reservoir requirements
- Reduction in space for cooling due to reduced heat loads and elimination of most noise containment hardware

More reliable operation

- ► Integrated system design using proven hydraulic and electrical components
- ► Condition monitoring and diagnosis available in the drive control electronics

Retrofit design assistance

Rexroth can provide customers with support throughout the retrofitting process, from planning to assembly to on-site commissioning.

Compliance with regulatory requirements

Sytronix variable-speed pump drives can assist with compliance for noise control (EU Directive 2003/10/EC) and electric motor energy efficiency (EU Regulation (EC) no. 640/2009).

Application areas

- ► Wood and paper processing machines
- ► Plastics processing machines
- **▶** Die-casting machines
- ▶ Presses
- Machine tools
- ▶ Metallurgy

Sytronix system overview

Scalable power and functionality

Sytronix variable-speed pump drives offer a comprehensive range of pumps, controllers, motors and software to suit a wide spectrum of applications. Rexroth provides machine manufacturers support during project planning, utilizing simulation models for system design and component selection. Scalability of performance and function allows for an optimal choice of system components.

When using a cascade system, multiple Sytronix drives can work together to efficiently generate the flow rate required for the process.

Sytronix systems are available as pre-configured systems or as individually configured components.

Always the right Sytronix system

Rexroth offers variable-speed pump drives in three performance classes:

Basic Dynamics

Sytronix FcP - frequency-controlled pump drive

FcP systems are suitable for standard applications with constant pressure control, for open hydraulic systems up to 90 kW. Typical applications are machine tool systems, as well as auxiliary axis movements in different applications such as presses.

High Dynamics

Sytronix SvP - servo variable pump drive

SvP systems use the high dynamics of synchronous permanent magnet motors to achieve significant energy savings. Capabilities include axis control functions in both open and closed hydraulic circuits requiring high dynamic performance, as well as advanced electrical and electrohydraulic control. Plastics processing machines and presses are key sectors for this technology.

High Power and Dynamics

Sytronix DFE – variable-speed drive utilizing a pump with electronic pressure and flow control

DFE systems are suited for high performance applications requiring a favorable price-performance ratio. These systems utilize variable displacement piston pumps and are especially suited for retrofit installations in existing systems. Capable of axis control functions, these drives offer high performance in open hydraulic circuits, and can be used in machines with multiple hydraulic functions.

The Sytronix house

Sytronix

Variable-Speed Pump Drives

Preconfigured sets

Drives for pressure control

• Pressure and flow control

Sytronix SvP

Drives for axis control

- Pressure and flow control
- Force and velocity control
- Positioning

Sytronix DFE

Drives for axis control

- · Pressure and flow control utilizing variable displacment pumps
- Power control

Basic Dynamics

High Dynamics

High Dynamics & High Power

Individual Sytronix Solutions

Customizable solutions from Rexroth electric and hydraulic program

- Communication via Ethernet and other fieldbuses
- Master/Slave operation
- Cascaded pumps
- Safety on Board
- Custom system functions

Sytronix selection guide

	Doguiromento			Effective p	erformance	
	Requirements			80 kW	90 kW	315 kW*
	Closed hydi	aulic circuit	C. D. 7010			
Open and closed-loop axis	Open hydraulic	One hydraulic circuit in the machine	SvP 7010			
control	circuit	Multiple hydraulic circuits in the machine			DFE 5010 / 7010	
Constant pressure system	Open hydra	aulic circuit	FcP 5010 / 7010			

^{*} Higher power range on request

The Sytronix selection guide shows the Rexroth Sytronix product family.

Open and closed-loop axis control

- ► For closed hydraulic circuits, Sytronix SvP speed-variable drives offer high dynamics and comprehensive electrical and electrohydraulic control options. In open hydraulic circuits, the Sytronix DFE system, utilizing electronic pump control of pressure/flow (p/Q), is an alternative option. DFE-based hydraulic drives offer an addition to the performance portfolio and are suitable for machines with multiple hydraulic circuits.
- In cascade systems, multiple Sytronix drives work together to efficiently generate the flow rate required for the process.

Constant pressure systems

► For constant pressure systems, cost-effective Sytronix FcP drives using VFD driven asynchronous motors are suitable for conventional drives up to 90 kW.

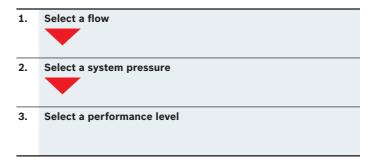
Two options for Sytronix systems

After choosing the appropriate product family using the selection guide, there are two options for the pump system to fit the requirements:

- ► Pre-configured system sets from the product families of FcP, SvP or DFE using the selection guides (see next page).
- Assembly of **individual systems** by combining modules and components using application guidelines and system requirements. This can be done in collaboration with Rexroth applications specialists, for example for Sytronix systems with pump types that are not yet available in the sets (see "Sytronix individual solutions" on page 42).

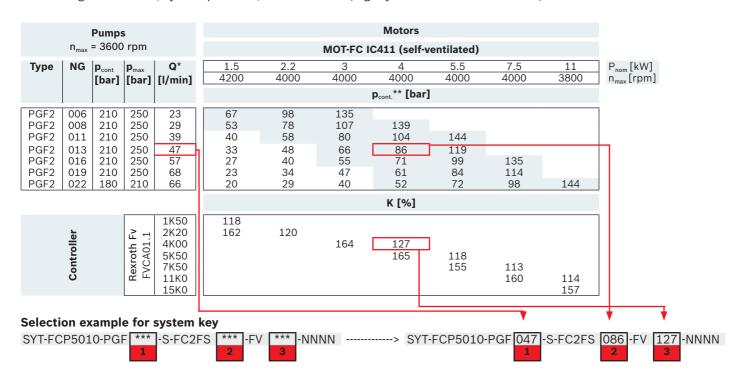
Sets will be available starting in October 2013. Please contact your Bosch Rexroth for questions regarding availability.

Sytronix system key


1		2	3	4		5	6		7		8	9	10	11		12	13		14
SYT	-				_			-		-					-			_	
Exampl	е																		
SYT	_	DFE	50	10	_	D10	xxx	_	S	_	FC2	N	А	xxx	_	FV	xxx	_	NNNN

	Description	Pos.	Designation	Entry
	Product line	01	Sytronix	SYT
System	Product family	02	SvP FcP DFE	SVP FCP DFE
Sys	Series	03	Rexroth Fv = 50 IndraDrive Hxx = 70	50 70
	Generation	04	10	10
Pump	Pump technology	05	PGH PGM PGF A10 A4 DFE-A10 DFE-A4	PGH PGM PGF A10 A04 D10 D04
_	System flow	06	I/min	ххх
	Coupling	07	Direct Standard	D S
ē	Motor technology	08	Servo = MSK Asynchronous = MOT-FC IE2 Servo asynchronous = MAD	MSK FC2 MAD
(control	Rated speed	09	1500 2000 3000	F H N
Motor/system pressure/controller	Motor cooling	10	Forced-ventilated (IC 416) Self-ventilated (IC 411) Liquid-cooled Convection	A S L N
/syste	Nominal pressure Motor-pump unit	11	bar	ххх
Motor/	Controller	12	Rexroth Frequency Converter Fv IndraDrive HCS IndraDrive HMV/HMS	FV HC HM
	Performance overload	13	%	xxx
	Implementation	14		NNNN

Selecting pre-configured systems

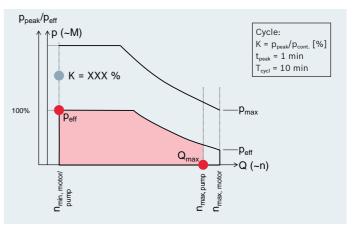

Use the following selection guides for each product family to determine your options based on the following three parameters.

Three steps for choosing a Sytronix system

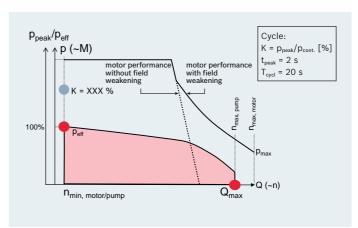
The Sytronix system key guides the user to a system selection. For a definition of the Sytronix system key, please see page 9.

Steps 1 + 2Selection guide for flow, system pressure, and controller (e.g. Sytronix FcP 5010 with PGF)

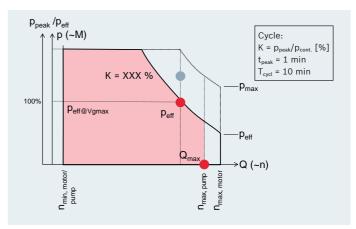
⁼ Preferred systems


- * The maximum permissible speeds of the overall system resulting from the concerned motors and pumps were used to calculate the cell values. The flow was calculated without the degree of efficiency.
- ** The effective pressure was calculated without the degree of efficiency.

Step 3


The performance of your pump system is determined by the peak load that can be obtained in intermittent operation, without damage to the pump drive system. It is defined as $p_{\text{peak}}/p_{\text{cont.}}$ and described as the factor K in %. The individual pump-motor combinations determine the characteristic curves for the appropriate Sytronix system.

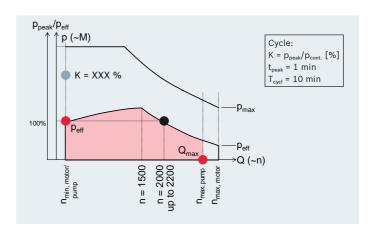
Sytronix selection guides for individually configured system components


To configure a Sytronix system, all required components are available separately (see "Components and modules" on page 46). Bosch Rexroth specialists can provide support for the selection process. Steps and selection guides are described in the section "Individual solutions" (see page 42).

Performance curve, example FcP 5010 - forced-ventilated, constant pump

Performance curve, example SvP 7010 - forced-ventilated, constant pump

Performance curve, example DFE 5010 - self-ventilated, variable pump


Sytronix configuration guide for constant pressure systems, e.g. FcP 5010 solutions

Using a self-ventilated motor (designation: IC411) and a constant pump allows the system to maintain the system pressure $p_{cont.}$ indicated in the selection guides beyond the nominal motor speed of 1500 rpm, up to a constant speed of approximately 2000-2200 rpm. With a PGF2 013 internal gear pump, the corresponding flow is calculated (without the degree of efficiency) as follows: $Q=(n^*V)/1000$ --> $Q=(2200 \text{ rpm}^*13 \text{ cm}^3)/1000$ --> $Q=28.6 \text{ l/min. E. g. at a p_{cont.}}$ of 86 bar as indicated in the selection guide for a PGF2 013, this pressure can be held constant at a flow of 28.6 l/min.

The flow value of 47 l/min specified in the selection guide always refers to the maximum possible speed of either the hydraulic pump n_{max} , p_{pump} or asynchronous motor n_{max} , p_{motor} . This flow value of 47 l/min can only be achieved temporarily at reduced pressure.

The minimum speeds for the hydraulic pump $n_{\text{min, pump}}$ and asynchronous motor $n_{\text{min, motor}}$ depend on the selected Sytronix system and the system pressure. For FcP and DFE applications, the minimum speed depends on the pressure and is typically more than 100 rpm. For SvP applications, the speed can significantly be less than 100 rpm for a temporary period.

You can use the SytronixSize design tool to perform detailed calculations for your application.

Configuration curve, example FcP 5010 – self-ventilated, constant pump, constant pressure system

Sytronix FcP variable-speed pump drives

FcP system sets

Sytronix FcP (frequency controlled pump drive) systems consist of a motor-pump assembly with a standard asynchronous motor and a VFD with control electronics. With regard to dynamics, accuracy and functionality, the FcP product family covers standard performance hydraulic drives and is suitable in the following applications:

- ► Constant pressure systems up to 90 kW
- ► Applications with controlled volume flow profile or where alternating p/Q control is required
- ▶ Open hydraulic circuits
- ► Single quadrant operation

Starting with the basic FcP system, a PGF family internal gear pump is used for pressure and flow control. For higher pressure and performance, the PGH internal gear pump is utilized, as well as A10 and A4 axial piston variable displacement pumps. When used at high pressures, utilizing variable displacement piston pumps helps to reduce the torque on the electric motor so that a smaller drive can be selected.

FcP 5010 and FcP 7010 utilize different VFD drive electronics. Differences include the type and scope of communication and bus interfaces, as well as additional functionality and user interfaces.

Components

- ▶ Hydraulic pump
- ▶ Electric motor
- VFD with control electronics
- ▶ Pressure transducer

Applications

The FcP systems are energy-efficient variable-speed pump drives for constant pressure systems (e.g. machine tools) with open hydraulic circuits as well as in systems for pressure supply for auxiliary axis movements, such as in presses and metallurgy.

Sytronix FcP systems

Sytronix FcP key advantages:

- ► Cost-effective, energy-efficient drive
- ► Intuitive, easy, manual parameterization
- ▶ Optional additional control features

Function

In constant pressure systems, the drive controls the motor speed to maintain constant system pressure. This is accomplished by modulating the flow to provide constant system pressure independent of the flow demand. Use of additional hydraulic accumulators ensures fast pressure requirements in smaller systems. Conventional directional valves control the flow direction and determine the direction of travel of the hydraulic actuator. The desired pressure setting is determined by the machine control and used as a command value to the VFD. The VFD control compares the command value with the actual value measured by a pressure transducer and adjusts the motor speed accordingly.

PLC Pressure Controller **p**_{ACT} Volume flow Controller p_{CMD} p/F \n/ AC Supply

FcP block diagram

FcP 7010

Features

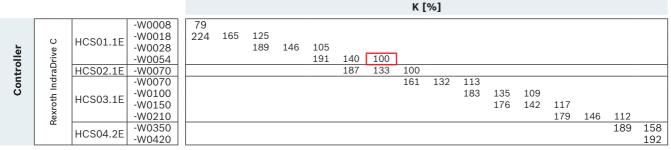
- ▶ Performance up to 90 kW effective
- ► Support for most industry standard buses: CANopen, PROFIBUS, sercos, EtherNet/IP, ProfiNet, and EtherCAT.
- ► Drive-integrated PLC for enhanced capabilities, based on IEC-61131
- ► Double quadrant operation
- ► "Safety on Board", auto-tuning, pump protection, multi-Ethernet communication, condition monitoring

Components

- ▶ MOT-FC motor with forced or self-ventilation
- ▶ Pump types PGF, PGH, A10VZO-EZ4, and A4VSO-EZ
- ► IndraDrive controller
- ► Scalable Basic, Advanced controller

Applications

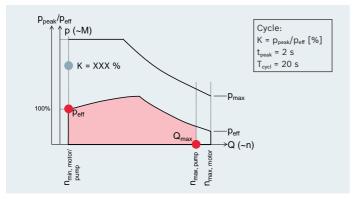
- ► Similar to the FcP 5010 series, typical uses are in constant pressure systems for open hydraulic circuits and controlled axis movement. In addition, the FcP 7010 using the IndraDrive controller provides further functional control features.
- ▶ Systems up to 20 kW commonly used in machine tools
- Systems up to 630 kW found in axis control in the metallurgy and press industries. In these fields axial piston pumps optimized for higher system pressure operation are typically used.

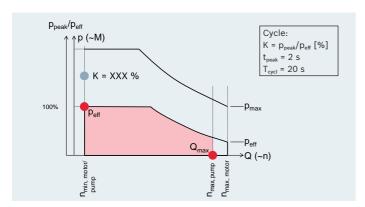


FcP 7010 with PGH

Selection guide for Sytronix FcP 7010 with PGH

		Pun	nps ¹⁾									Mot	ors ¹⁾							
	n,	_{max} = 30	000 rpm	1		МО	T-FC I	C411 ((self-v	entila	ted)			МОТ	FC IC	416 (f	orced	ventil-	ated)	
Туре	NG	p _{cont} [bar]	p _{max} [bar]	Q [I/min]	1.5 4200	2.2	3 4000	4 4000	5.5 4000	7.5 4000	11 3800			22 3800	30 3800	37 2800	45 2800	55 2800	75 2800	90 2800
												p _{eff} [parj							
50110	005	315	350	15	87	128	176	229	004											
PGH2	006	315 315	350 350	18 24	73 54	106 80	147 110	191 143	264 198	269										
	011	315	350	33	40	58	80	104	144	196	288									
PGH3		315	350	39	33	49	68	88	122	166	244									
	016	315	350	48	27	40	55	71	99	135	198	269								
	020	315	350	60	22	32	44	57	79	108	158	216								
	025	315	350	75	17	26	35	46	63	86	127	172	302							
PGH4		315	350	96		20	27	36	49	67	99	135	236	281	005					
	040	315 250	350 310	120 150		16	22 18	29 23	40 32	54 43	79 63	108 86	188 151	225 180	305 244					
	063	315	350	189/176*			10	18	<u> </u>	34	50	68	120	143	193	237*	289*			-
	080	315	350	240/224*				10	20	27	40	54	94	112	152	187*		278*		
	100	315	350	300/280*					16	22	32	43	75	90	122	150*	182*	222*	303*	
PGH5		315	350	375/350*						17	25	34	60	72	98	120*	146*	178*	243*	292*
	160	210	260	480/448*							20	27	47	56	76	93*	114*		190*	
	200	170	210	600/560*							16	22	38	45	61	75*	91*	111*		
	250	135	170	750/700*								17	30	36	49	60*	73*	89*	121*	


^{*} Flow limited by the maximum motor speed


¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key

Performance curve for FcP 7010 - self-ventilated with constant internal gear pump

Performance curve for FcP 7010 – forced-ventilated with constant internal gear pump

Detailed component information:

Motors: see "Motors" starting on page 63 Pumps: data sheets 10227, 10223

Controller: catalog R999000018 (DE), R999000019 (EN)

FcP 7010 with A10VZO-EZ4

Selection guide for Sytronix FcP 7010 with A10VZO-EZ4

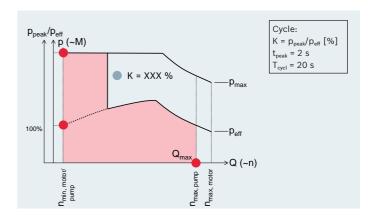
		Pur	nps ¹⁾										ors ¹⁾		. 10						
Туре	NG	p _{cont}	p _{max} [bar]	n _{max}	Q [I/min]	1.5 4200	2.2	3 4000	4 4000	5.5 4000	7.5	11	15	18.5 3800	22	30	37	45 2800	55 2800	75 2800	90 2800
	010	250	315	3600	37	59	87	120	156	215			p _{eff} [bar]							
	018 028	280 280	350 350	3300 3000	59 84	35	51 33	70 45	91 58	126 81	171 110	162	220								
A10VZO-EZ4	045 071	280 280	350 350	3000 2550	135/126* 181		20	28 18	36 23	50 32	68 43	101 64	137 87	168 106	200 126	171	210	256			
	100 140 180	280 280 280	350 350 350	2300 2200 1800	230 308 324					23 16	31 22 17	45 32 25	62 44 34	75 54 42	90 64 50	122 87 68	150 107 83	182 130 101	222 159 124	217 169	260 202

^{*} Flow limited by the maximum motor speed

										Κ[%]							
	O	HCS01.1E	-W0008 -W0018	79 224	165	125												
<u>.</u>	rive	HCSU1.1E	-W0028 -W0054			189	146	105 191 140	100									
Controller	raD	HCS02.1E	-W0070					187	133	100								
tr	Б		-W0070							161	132	113						
ou	oth I	HCS03.1E	-W0100									183	135	109				
ŭ	-	TC303.1E	-W0150										176	142	117			
	Rex		-W0210												179	146	112	
		HCS04.2E	-W0350														189	158
		110304.2L	-W0420															192

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 91485

Controller: catalog R999000241 (DE), R999000242 (EN)

 $\label{eq:performance} Performance\ curve\ for\ FcP\ 7010-self-ventilated\ with\ axial\ piston\ pump\ with\ two-point\ adjustment$

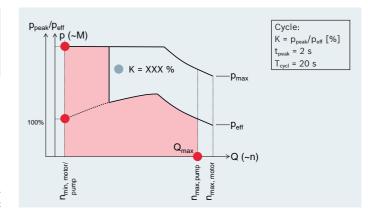
FcP 7010 with A4VSO-EZ

Selection guide for Sytronix FcP 7010 with A4VSO-EZ

			Pumps ¹⁾						Mot	ors ¹⁾			
								MOT-F	C IC411	(self-vent	ilated)		
Type	NG	p _{cont} [bar]	p _{max} [bar]	n _{max} [rpm] [Q [l/min]	18.5 3800	22 3800	30 3800	37 2800	45 2800	55 2800	75 2800	90 2800
									p _{eff} [bar]			
	040	350	400	2600	104	188	225	305					
	071	350	400	2200	156	106	127	172	211	257	313		
A4VSO-	125	350	400	1800	225	60	72	98	120	146	178	234	292
EZ	180	350	400	1800	324			68	83	101	124	169	202
	250	350	400	1900	475				60	73	89	121	146
	355 500	350 350	400 400	1700 1500	603 750					51	63	85 61	103 73
	[300]	330	400	1300	750							01	13
									К[%]			
				-W00	070	132	113						
<u> </u>		e C	HCS03.1E	-W01	100		183	135	109				
Controller		Rexroth IndraDrive	110303.1E	-W01				176	142	117			
ī		Rex Ira[-W02						179	146	112	150
ပိ		_ <u>u</u>	HCS04.2E	-W03								189	158
			I	-W04	+2U	1							192

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 92050

Controller: catalog R999000241 (DE), R999000242 (EN)

 $[\]label{eq:performance} Performance \ curve \ for \ FcP \ 7010-self-ventilated \ with \ axial \ piston \ pump \ with \ two-point \ adjustment$

FcP 5010

Features

- ▶ Performance up to 90 kW effective
- ► FcP 5010 based on the Rexroth Fv VFD offering standard control features and analog and PROFIBUS interfaces. Simple on-board configuration using the interface control panel.
- ► Double quadrant operation
- Pump protection

Components

- ▶ MOT-FC motor with forced or self-ventilation
- ▶ Pump types PGF, PGH, A10VZO-EZ4, and A4VSO-EZ
- ► Rexroth Fv FVCA01.1 control

Applications

- ▶ Suitable for use in open hydraulic circuits for central pressure supply in assemblies with multiple axes: i.e. constant pressure systems. FcP is an energy-saving solution and can reduce hydraulic energy consumption by 30 to 70%, depending on the operational cycle. Typically a smaller displacement pump can be used and cooling requirements are reduced for the same hydraulic output.
- ▶ Systems up to 20 kW commonly used in machine tools
- Systems from 20 to 90 kW found in axis control in the metallurgy and press industries. In these fields axial piston pumps optimized for higher system pressure operation are typically used.

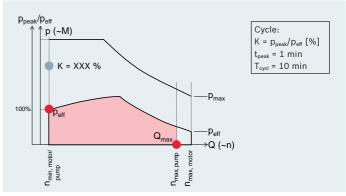
FcP 5010 with PGF

Selection guide for Sytronix FcP 5010 with PGF

		Pumps = 3600					MOT-EC I	Motors ¹⁾ C411 (self-v	ventilated)		
Туре	NG	p _{cont}	p _{max}	Q [I/min]	1.5 4200	2.2 4000	3 4000	4 4000 p _{eff} [bar]	5.5 4000	7.5 4000	11 3800
PGF2 PGF2 PGF2 PGF2 PGF2 PGF2	006 008 011 013 016 019 022	210 210 210 210 210 210 210 180	250 250 250 250 250 250 250 210	23 29 39 47 57 68 66	67 53 40 33 27 23 20	98 78 58 48 40 34 29	135 107 80 66 55 47 40	139 104 86 71 61 52	144 119 99 84 72	135 114 98	144
								K [%]			
	Controller		Rexroth Fv FVCA01.1	1K50 2K20 4K00 5K50 7K50 11K0 15K0	118 162	120	164	127 165	118 155	113 160	114 157

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) ²⁾ 3000 rpm

Note: For a detailed explanation of the tables, see page 10


Selection example for system key

Detailed component information:

Motors: see "Motors" starting on page 63

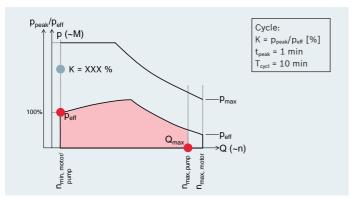
Pumps: data sheet 10213 Controller: catalog R912004739

Performance curve for FcP 5010 - self-ventilated

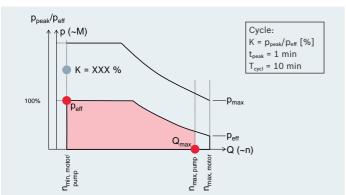
FcP 5010 with PGH

Selection guide for Sytronix FcP 5010 with PGH

		Pum										Mot	ors ¹⁾							
	n _m	_{ax} = 30	000 rpi	m		МО	T-FC I	C411	(self-v	entila	ted)			МОТ	FC IC	416 (f	orced	ventil	ated)	
Type	NG	p _{cont} [bar]	p _{max} [bar]	Q [I/min]	1.5 4200	2.2 4000	3 4000	4000	5.5 4000	7.5 4000	11 3800		18.5 3800 [bar]	22 3800	30 3800	37 2800	45 2800	55 2800	75 2800	90 2800
	006 008 011 013 016	315 315 315 315 315 315 315	350 350 350 350 350 350 350	15 18 24 33 39 48 60	87 73 54 40 33 27	128 106 80 58 49 40	176 147 110 80 68 55	229 191 143 104 88 71 57	264 198 144 122 99 79	269 196 166 135 108	288 244 198 158	269 216								
PGH4	025 032 040 050	315	350 350 350 310	75 96 120 150 189/176*	17	26 20 16	35 27 22 18	46 36 29 23	63 49 40 32 25	86 67 54 43	127 99 79 63 50	172 135 108 86 68	302 236 188 151 120	281 225 180 143	305 244 193	237*	289*			
PGH5	080 100 125 160 200	315 315	350 350 350 260 210	240/224* 300/280* 375/350* 480/448* 600/560* 750/700*					20 16	27 22 17	40 32 25 20 16	54 43 34 27 22 17	94 75 60 47 38 30	112 90 72 56 45 36	152 122 98 76 61 49	187*	228* 182* 146*	222* 178* 139*	243*	292*
												Κ[[%]							
	Controller		Rexroth Fv FVCA01.1	1K50 2K20 4K00 5K50 7K50 11K0 15K0 18K5 22K0 30K0 37K0 45K0 55K0 75K0 90K0	118 162	120	164	127 165	118 155	113 160	114 157 186	118 139 157	115 129 176	110 150 188	111 139 176	112 142 164	117 136 188	111 154 185	117 141	117


¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47)

Note: For a detailed explanation of the tables, see page 10


Selection example for system key

^{*} Flow limited by the maximum motor speed

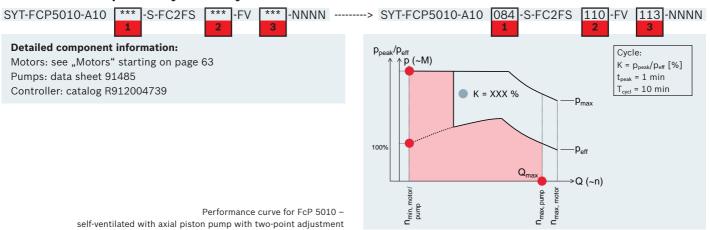
Performance curve for FcP 5010 – self-ventilated with constant internal gear pump

Performance curve for FcP 5010 – forced-ventilated with constant internal gear

Detailed component information:

Motors: see "Motors" starting on page 63 Pumps: data sheets 10227, 10223 Controller: catalog R912004739

FcP 5010 with A10VZO-EZ4


Selection guide for Sytronix FcP 5010 with A10VZO-EZ4

	_			•																	
		_	41										Mot	ors ¹⁾							
		Pum	ps ¹⁾								MOT	EC IO	2/11	(self-	vantil	ated)					
Туре	NG	n .	p _{max}	n _{max}	Q	1.5	2.2	3	4	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
.,,,,			[bar]		[I/min]						4000										
			-										p _{eff}	[bar]							
	010	250	315	3600	37	59	87	120	156	215											
	018		350	3300	59	35	51	70	91	126	171	400	000								
A10VZO-	028 045		350 350	3000	84 135/126*	22	33 20	45 28	58 36	81 50	110 68	162 101	220 137	168	200						
EZ4	071	280	350	2550	181			18	23	32	43	64	87	106	126	171	210	256			
	100			2300	230					23 16	31 22	45 32	62 44	75 54	90 64	122 87	150 107	182 130	222 159	217	260
	140 180			2200 1800	308 324					10	17	25	34	42	50	68	83			169	202
													K	[%]							
				1K5	0	118															
				2K2		162	120	164	127												
		+:		4K0 5K5				104		118											
		FVCA01.		7K5	o						113	١									
<u>e</u>))		11K 15K							160		118								
r o		F.		18K									139	115							
Controller				22K									157								
O		rot		30K										1/6	150	111	112				
		Ĝ		45K	0										100		142				
																	164	136		117	
			30K0 37K0 45K0 55K0 75K0 90K0															188	154 185	141	117

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47)

Note: For a detailed explanation of the tables, see page 10

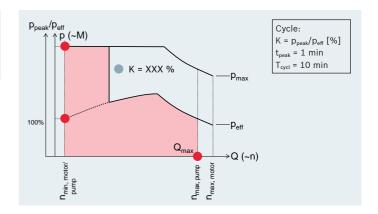
Selection example for system key

^{*} Flow limited by the maximum motor speed

FcP 5010 with A4VSO-EZ

Selection guide for Sytronix FcP 5010 with A4VSO-EZ

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10


Selection example for system key

Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 92050 Controller: catalog R912004739

 $\label{eq:performance} Performance\ curve\ for\ FcP\ 5010-self-ventilated\ with\ axial\ piston\ pump\ with\ two-point\ adjustment$

Sytronix SvP variable-speed pump drives

SvP system

Sytronix SvP (**s**ervo **v**ariable **p**ump drive) systems consist of a motor-pump assembly driven by a permanent magnet synchronous servo motor and servo controller.

In the family of Sytronix variable-speed pump drives, the Sytronix SvP offers the highest dynamic performance and control accuracy. SvP systems provide the broadest range of control functionality, from pressure and force control to flow and speed control to position control and alternating control.

The controller is part of Rexroth's proven IndraDrive family using the IndraWorks engineering tool as the interface. In addition to traditional hydraulic control functionality, the SvP system provides further functions of pressure ripple compensation, energy monitoring, productivity and condition monitoring, as well as maintenance and troubleshooting aids.

The SvP system can be configured for required communication interfaces by exchanging the CSH controller. The command and actual values of pressure, flow and position can then be commanded and monitored by a high level machine control system using either an analog interface or industry standard bus interfaces. The SvP provides easy and flexible integration into machine control systems.

Components

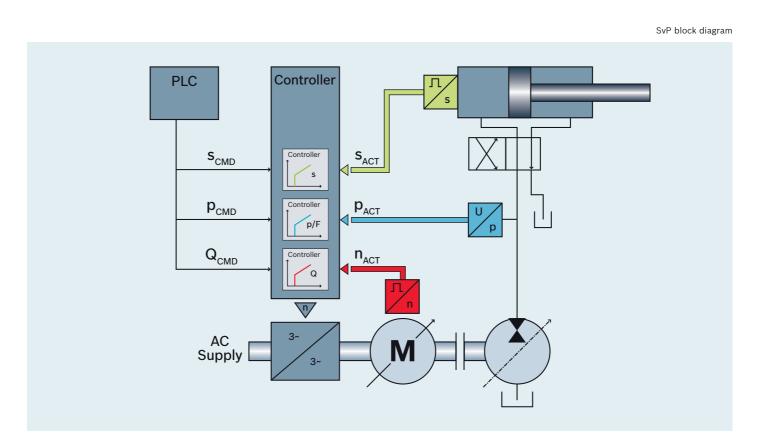
- ▶ Hydraulic pump
- ► Synchronous servo motor
- ► IndraDrive servo controller
- ▶ Pressure transducer

Applications

The system is suitable for use in either open or closed hydraulic systems controlling hydraulic axes.

Sytronix SvP systems

Sytronix SvP features key functions:


- ► High efficiency servo motors with a level of standard and direct pump mount versions
- ► High dynamics and control accuracy
- ► Broad range of control functionality

Functionality

Using an internal gear pump, type PGH or PGM, the required flow is controlled directly by motor speed. The pumps are optimized for variable-speed operation and achieve a high overall efficiency due to low leakage, and operate with minimum noise.

In operation, sensors measure pressure, actuator position and the servo motor speed, which are used by the servo controller. Command values, which can be set by the machine control, are compared by the IndraDrive, which adjusts the pump drive speed to match the system requirements.

SvP 7010

Features

- ▶ Performance up to 80 kW effective
- ► Suitable for axis control in open and closed hydraulic systems
- ► Two quadrant operation

Components

- ► MSK motors with air and liquid-cooled
- ▶ PGH and PGM pumps
- ► HCS and HMS IndraDrive controllers

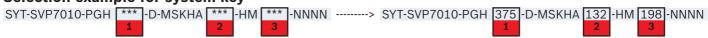
Application

The SvP 7010 offers performance up to 80 kW and is ideal in the following application areas:

- ► Plastics processing machines
- ► Die-casting machines
- ► Injection molding machines
- ▶ Presses*

The controller is optimized for Sytronix applications and compensates for the characteristics of hydraulic systems to provide optimal dynamics and accuracy.

^{*} Consider fan approval directive in press applications.

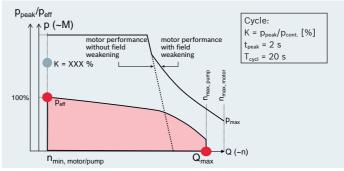

SvP 7010 with PGH (4.5), MSK forced-ventilated Direct coupling

Selection guide for Sytronix SvP 7010 with PGH

			mps ¹⁾			Motors 1) (forced-ventilated)										
	- 1	$n_{max} = 3$	000 rpm					М	SK101						MSK13	3
					C-0202	C-0300	D-0202	D-0300	E-0202	E-0300	F-0202	F-0300	B-0202	C-0202	D-0202	2 E-0202
Туре	NG	p _{cont.}	p _{max}	Q	48.0	48.0	75.0	75.0	105.0	105.0	124.5	124.5	152.0	204.0		293.0
		[bar]	[bar]	[l/min]	110.0	110.0	160.0	160.0	231.0	231.0	310.0	310.0	320.0	425.0	520.0	630.7
					p _{cont.} [bar]											
	020	315	350	60	150	150	234	234								
	025	315	350	75	119	119	186	186	261	261	309	309				
PGH4		315	350	100	92	92	144	144	202	202	239	239				
	040	315	350	120	75	75	118	118	165	165	195	195				
	050	250	310	150	59	59	93	93	130	130	154	154				
	063	210 315	250 350	190 190	47	47	73	73	102	102	121	121	148	198	255	285
	080	315	350	240									146	157	203	205
PGH5		315	350	300									95	128	165	184
- СПЗ	125	315	350	375									76	102	132	147
	160	210	260	480									59	79	102	113
										ΚI	[%]					
				-W0054	149	123					-					
			CS02.1E	-W0034	188	159	137									
	÷	IndraDrive		-W0070	227	199	171	135	130		118					
	Rexroth	Б н	CS03.1E	-W0100		229	206	172	168	138	158	125	138	111		
	Reg	ra		-W0150				212	214	184	217	176	188	155	128	115
e		트		-W0210						220		246	211	208	175	166
<u></u>		H	CS04.2E	-W0350											198	215
Controller		_		-W0036	133	111										
ပိ	_	2		-W0054	199	169	145	110	101							
	Rexroth	. <u>ĕ</u>		-W0070		188	161	126	121	1.40	101	100	1.40	445		
	- X		MS01.1N	-W0110		229	210	177	173	142	164 223	130	143 193	115 159	122	110
	ا ه	IndraDrive M H		-W0150 -W0210				213	217	187 220	223	181 245	193	208	132 174	119 165
		=		1 1						220		240		200		_
				-W0300 l											198	191

¹⁾ Pump and motor can also be ordered separately as motor-pump-assembly MPA01 (see "Motor-pump-assemblies" starting on page 47). Note: For a detailed explanation of the tables, see page 10.

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 10223

Controller: catalog R999000018 (DE), R999000019 (EN)

Performance curve for SvP 7010 - forced-ventilated

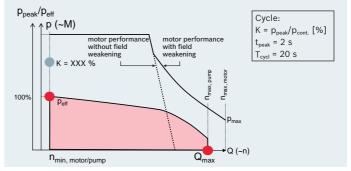
SvP 7010 with PGH (5), MSK liquid-cooled Direct coupling

Selection guide for Sytronix SvP 7010 with PGH

				ps ¹⁾		N	lotors 1) (I	iquid-cool	ed)
	r	l _{max} :	= 30	000 rpm		B-0203	C-0203	ISK133 D-0203	E-0203
Туре	NG	p _{cc} [ba		p _{max} [bar]	Q [I/min]	162.0 300.0	232.5 400.0	290.0 500.0	342.0 583.0
			•		1,7		p _{cont}	[bar]	
	063	31		350	190	157	226	282	
DOLLE	080	31	- 1	350	240	125	179	224	264
PGH5	100 125	31 31		350 350	300	102 81	146 117	182 145	214 171
	160	21		260	375 480	63	90	112	132
							K	[%]	
		O 0			-W0100	129			
	l ţ	rive	H	CS03.1E	-W0150	176	136	116	
ē	Rexroth	IndraDrive			-W0210		183	159	142
ē	-	<u> </u>	H	CS04.2E	-W0350			179	184
Controller	_	Σ			-W0110	134			
ŭ	l dt)rive	N	4801 1N	-W0150	181	140	119	
	Rexroth IndraDrive M NUT:100SWH			-W0210		183	158	141	
	-	lnd			-W0300			179	164

¹⁾ Pump and motor can also be ordered separately as motor-pump-assembly MPA01 (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10.

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 10223

Controller: catalog R999000018 (DE), R999000019 (EN)

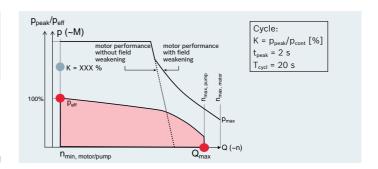
Performance curve for SvP 7010 - liquid-cooled

SvP 7010 with PGH (2,3,4,5), MSK forced-ventilated Standard coupling

Selection guide for Sytronix SvP 7010 with PGH

The color of the			Pum	ps ¹⁾								M	otors 1) (forc	ed-ve	ntilate	ed)						
Property	$n_{max} = 3000 \text{ rpm}$														MSk						M		3
The color The		'	illax																				
Figure F	Туре	NG	p _{cont.}	p _{max}	Q	18.0																	
Second Color Col			[bar]	[bar]	[l/min]	44.0	44.0	66.0	66.0	84.0	84.0	110.0	110.0	160.0	160.0	231.0	231.0	310.0	310.0	320.0	425.0	520.0	630.7
GH2 006 315 350 18													$\boldsymbol{p}_{\text{cont.}}$	[bar]									
008 315 350 24 38 38 202 202 264 264 38 385 350 33 385 350 38 385 355 350 38 385 355 350			-																				
GH3 011 315 350 39 85 85 124 124 163 163 163 163 163 163 163 163 163 163	PGH2									204	20.4												
Second S																							
The color of the	ьснз		-																				
Second Color Col	GITO																						
GH4 032 315 350 100 040 315 350 120 28 28 41 41 54 54 54 54 22 22 33 33 43 43 43 O63 315 350 190 080 315 350 300 100 315 350 300 100 315 350 300 100 210 210 210 210 210 210 210 210 2			315			56																	
Standard coupling on request. Standard coupling on request			-			1								Direct	count	ing ລຸທຸລ	ilahla						
OSO 250 315 150	PGH4		-															uest.					
Column C																							
The color of the						22		33	55	40	40	47	Δ 7	73	73	102	102	121	121				
GHS 125 315 350 375 160 210 260 480 200 170 210 600 250 135 170 750 Column Colu																							
This 125 315 350 375 350 240 480 200 170 210 600 250 135 170 750													30										g
160 210 260 480 200 170 210 600 200 170 750 210 600 155 15 15 24 24 33 33 39 39 39 39 39 3	GH5																						ling
The color of the																							Ü
HCS02.1E												15	15										
HCS02.1E		[230]	133	170	730												20)I	J1				
HCS02.1E						0.05								N.	70]								
The state of the				2002 15		226					17F	140	100										
The following large Fig. 2			-	,302.1E			244	251						137									
HCS04.2E -W0350 -W0020 -W0036 -W0054 -W0054 -W0054 -W0054 -W0054 -W0054 -W0050 -W0100 -W0100 -W0100 -W0100 -W0100 -W0210 -W0360		ŧ.	<u>-</u>						201	240					135	130		118					
HCS04.2E -W0350 -W0020 -W0036 -W0054 -W0054 -W0054 -W0054 -W0054 -W0054 -W0050 -W0100 -W0100 -W0100 -W0100 -W0100 -W0210 -W0360		exr	음 HC	S03.1E													138		125	138	111		
HCS04.2E	_	<u> </u>	힏ㅣ												212	214		217					
-W0054 -W0070 -W0110 -W0150 -W0210 -W	<u>e</u>			004.05													220		246	211	208		
-W0054 -W0070 -W0110 -W0150 -W0210 -W	tro		HC	S04.2E		107	1/0	150	122	112												198	215
-W0054 -W0070 -W0110 -W0150 -W0210 -W	on		_			19/					152	133	111										
220 240 200 174 100	O	ٰ ہے ا	2 0				201	2.13	200					145	111								
220 240 200 174 100		g	.≥	1901 1N	-W0070								188		126								
220 240 200 174 100		ex		1301.1N									229	210									
220 240 200 174 100		E .	힡												213	217		223		193			
			_		-W0210 -W0300												220		245		208		

Note: For a detailed explanation of the tables, see page 10


Selection example for system key

Detailed component information:

Motors: see "Motors" starting on page 63 Pumps: data sheets 10223, 10227

Controller: catalog R999000018 (DE), R999000019 (EN)

Performance curve for SvP 7010 - forced-ventilated

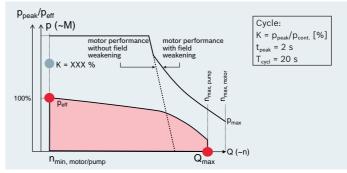
SvP 7010 with PGH5, MSK liquid-cooled Standard coupling

Selection guide for Sytronix SvP 7010 with PGH

			Pun	nps ¹⁾				ors ¹⁾ cooled)		
	I	n _{max}	= 30	000 rpm		B-0203	M C-0203	SK133 D-0203	E-0203	
Туре	NG	p _c		p _{max} [bar]	Q [l/min]	162.0 300.0	232.5 400.0	290.0 500.0	342.0 583.0	M_{eff} [Nm] M_{max} [Nm]
							p _{cont.}	[bar]		
	063 080	31 31	.5	350 350	190 240					
PGH5	100 125 160	31 31 21	.5	350 350 260	300 375 480		ect couplin Indard coup			
							K [[%]		
		O 0			-W0100	129				
	Rexroth	IndraDrive	HCS03.1E		-W0150	176	136	116		
<u> </u>	Jex Jex	la l			-W0210		183	159	142	
Modular		<u>=</u>	Н	CS04.2E	-W0350			179	184	
400	_	≥			-W0110	134		_		
_	rot	rive		MS01.1N	-W0150	181	140	119		
	Rexroth	IndraDrive M	"	VISUI.IIV	-W0210		183	158	141	
		<u> </u>			-W0300			179	164	

Note: For a detailed explanation of the tables, see page 10

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 10223

Controller: catalog R999000018 (DE), R999000019 (EN)

Performance curve for SvP 7010 - liquid-cooled

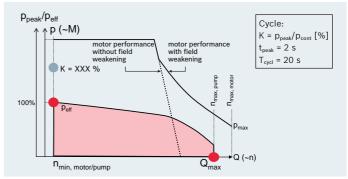
SvP 7010 with PGM (4, 5), MSK forced-ventilated Standard coupling

Selection guide for Sytronix SvP 7010 with PGM

	n,			ps ¹⁾ 00 rpm				Motor	rs ¹⁾ (forc	ed-vent	ilated)		
				-			M	SK101				MSK13	3
						C-0202	D-0202	E-0202	F-0202	B-0202	C-0202	D-0202	E-0202
Type	NG	p _{co}		p _{max}	Q [l/min]	48.0 110.0	75.0 160.0	105.0 231.0	124.5 310.0	152.0 320.0	204.0 425.0	263.0 520.0	293.0 630.7
		[ba	ır]	[bar]	[1/111111]	110.0	100.0	201.0		[bar]	420.0	020.0	000.1
	025	17	<u>'</u> 5	210	75	119		-			-		
	032	17		210	100	92	144	1					
PGM4		17		210	120	75	118	165					
	050	17		210	150	59	93	130	154				
	063	17		210	190	46	72	101	119	=			
PGM5	080	17 17		210 210	240 300					117 95	157 128	165	
PGIVIS	125	17		210	375					76	102	132	147
	•								Κ[[%]			
			110	000015	-W0054	149							
	1	C	нс	S02.1E	-W0070	188	137						
	Rexroth	<u>.</u>			-W0070	227	171	130	118				
	l ×	aD	HCS03.1E		-W0100		206	168 214	158	138 188	111 155	100	115
e	œ.	IndraDrive			-W0150 -W0210			214	217	211	208	128 175	115 166
<u>ē</u>		-	НС	S04.2E	-W0350						200	198	215
Controller					-W0036	133							
ပိ		S e			-W0054	199	145	101					
	J	ا ڬِ.	1.184	1S01.1N	-W0070		161	121 173	164	1.42	115		
	Rexroth	.a.	ΠIV	1201.1N	-W0110 -W0150		210	217	164 223	143 193	115 159	132	119
	<u> </u>	IndraDrive			-W0130			211	220	100	208	174	165
					-W0300			_				198	191

¹⁾ Pump and motor can also be ordered separately as motor-pump-assembly MPAS1 (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key



Detailed component information:

Motors: see motors starting on page 63

Pumps: data sheet 10229

Controller: catalog R999000018 (DE), R999000019 (EN)

Performance curve for SvP 7010 - forced-ventilated

Sytronix DFE variable-speed pump drives

DFE systems

Sytronix DFE systems consist of an electrohydraulically controlled axial piston pump, driven by a variable-speed asynchronous motor

Pump drives DFE 5010 and DFE 7010 are based on the proven DFE pressure and flow pump control system. Using industry standard inverter duty motors, up to 315 kW, results in a high price/performance ratio and high performance capabilities.

When using the "teach-in" version, the machine cycle pressure and flow profile is stored in the DFE control electronics. This allows the DFE system to accelerate the electric motor ahead of a required flow demand. In machines operating without a predictable operating cycle, such as wood and metallurgy applications, a "real-time" mode can be used. The DFE controller calculates an optimal combination of motor speed and pump swivel angle to maximize energy savings. Identical mechanical interfaces permit cost-effective retrofitting, e.g. of a DFE 5010, as a replacement for a SYDFEE/SYDFEC by simply exchanging the integrated pump valve electronics.

The control system is available for A10 and A4 pumps and can thus be used for a wide variety of applications.

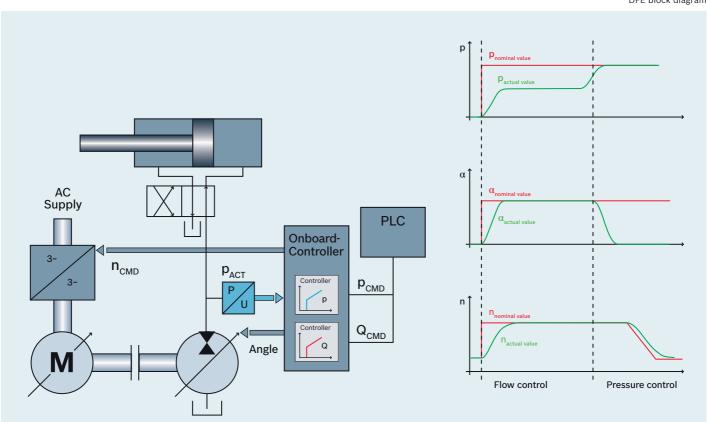
Components

- Axial piston variable pump with integrated control electronics
- ► MOT-FC standard asynchronous motor
- ▶ VFD to control motor speed
- ▶ Pressure transducer

Applications

Sytronix DFE is suitable for use in open hydraulic systems, with one or multiple hydraulic consumers, for control of pressure and flow.

Sytronix DFE systems


- Reduction of installed power by speed and flow control
- ► Easy retrofit for power units with variable displacement pumps
- ▶ High performance capability
- ► Multi-consumer system capability

Function

A DFE system utilizes an electrohydraulically controlled axial piston pump to command the pump's VFD drive. The digital on-board electronics calculates the optimal combination of swivel angle and motor speed based on system pressure. By reducing the pump swivel angle during pressure holding, the motor load is reduced and pump flow matches the system demand. With an optimal design, the power of installed electric motors can be reduced when compared to traditional designs.

DFE 7010

Features

- ▶ Performance up to 315 kW effective
- Suitable for use in open hydraulic systems with one or more hydraulic consumers, with pressure and flow control.

Components

- ► MOT-FC motor with self-ventilation
- ► SYDFEn-3X and SYHDFEn-1X pumps
- ► IndraDrive servo controller

Applications

Covering a power range up to 315 kW (on request up to 630 kW), it is particularly suited for use in harsh industrial environments, such as for presses, plastics processing machines, wood and metal industries.

Based on its mechanical interface, Sytronix DFE is suitable for designing pump combinations for multi-circuit systems and master-slave operation. This allows for direct energy coupling and mechanical regeneration via the pump shaft. No drive system capable of line regeneration is required!

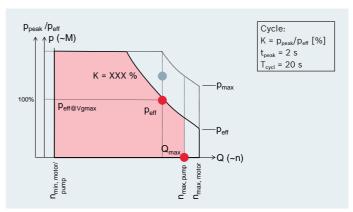
DFE 7010 with SYDFEn-3X (A10VSO)

Selection guide for Sytronix DFE 7010 with SYDFEn-3X (A10VSO)

	Pumps ¹⁾							Motors ¹⁾											
										МОТ	FC IC	C411	(self-v	entil:	ated)				
Туре	NG	p _{cont} [bar]	p _{max} [bar]	n _{max} [rpm]	Q [l/min]	3 4000	4 4000	5.5 4000	7.5 4000	11 3800	15 3800	18.5 3800	22 3800	30 3800	37 2800	45 2800	55 2800	75 2800	90 2800
							p _{eff} [bar]												
	071 100	280 280	350 350	2550 2300	181 230	18	23 16	32 23	43 31	64 45	87 62	106 75	126 90	171 122	210 150	256 182	222		
A10VSO	149 180	280 280	350 350	2200 1800	308 324			16	22 17	32 25	44 34	54 42	64 50	87 68	107 83	130 101	159 124	217 169	260 202
	11001	200	1 000	1000	024							K [%]						100	202
	rive C	HCS0	1.1E	-WC	0018 0028 0054	125 189	146	105 191	140	100									
<u>le</u> r	aDri	HCS0	2.1E	-W0054 1E -W0070				101	187	133	100								
Control	HCS02.1E -W0070 -W0070 -W0100 -W0150 -W0210 -W0350 -W0350 -W0420		-W0)100)150						161	132	113 183	135 176	109 142	117		·		
													179	146		158			

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key


Detailed component information:

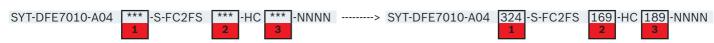
Motors: see "Motors" starting on page 63

Pumps: data sheet 10213

Controller: catalogs R999000018 (DE), R999000019 (EN),

R999000241 (DE), R999000242 (EN)

Performance curve for DFE 7010 - self-ventilated

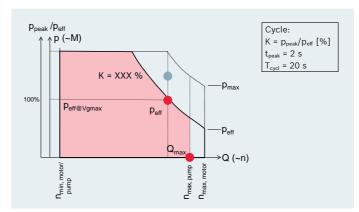

DFE 7010 with SYHDFEn-1X (A4VSO)

Selection guide for Sytronix DFE 7010 with SYHDFEn-1X (A4VSO)

		Pu	mps ¹⁾				Motors ¹⁾												
							MOT-FC IC411 (self-ventilated)												
Type	NG		p _{max}	n _{max}	Q	18.5	22	30	37	45	55	75	90	110	132	160	200	250	315
		[bar]	[bar]	[rpm]	[l/min]	3800	3800	3800	2800	2800	2800		2800	2500	2500	2500	2500	2200	2200
												p _{eff} [[bar]						
	125	350	400	1800	225	60	72	98	120	146	178	243	292					1	
A4VSO	180	350	400	1800	324			68	83	101	124	169	202	246	297	0.50	000		
,,,,,,,	250	350	400	1900	475				60	73	89	121	146	177	214	259	323	205	250
	355	350	400	1700	603					51	63	85	103	125	150	182	227	285	358
												K [[%]						
	O			-W(0070	132	113												
	1 1	HCS	03.1E		0100		183	135	109	447									
<u>-</u>	draDrive				0150 0210			176	142	117 179	146	112							
€	la				0350					113	140	189	158	129	108				
ŧ	<u> 2</u>				0420							100	192	157	132	110			
ő	_		14 2E		0520									192	161	134	107		
Co		HCS04.21			0640											168	135	109	440
	Re				0790												172	139	110

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key


Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 10213

Controller: catalogs R999000018 (DE), R999000019 (EN),

R999000241 (DE), R999000242 (EN)

Performance curve for DFE 7010 - self-ventilated

DFE 5010

Features

- ▶ Performance up to 90 kW effective
- Suitable for use in open hydraulic systems with one or more hydraulic consumers, with pressure and flow control.
- ► Two quadrant operation

Components

- ▶ MOT-FC motor with self-ventilation
- ► SYDFEn-3X and SYHDFEn-1X pumps
- ▶ Rexroth Fv VFD drive

Applications

Covering a power range up to 90 kW, it is suited for use in presses, plastics processing machines, wood and metal industries.

Based on its mechanical interface, Sytronix DFE is suitable for designing pump combinations for multi-circuit systems and master-slave operation. This allows for direct energy coupling and mechanical regeneration via the pump shaft. No drive system capable of line regeneration is required!

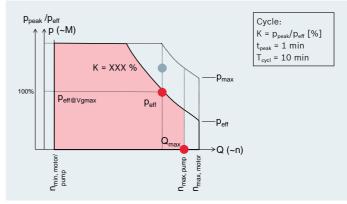
DFE 5010 with SYDFEn-3X (A10VSO)

Selection guide for Sytronix DFE 5010 with SYDFEn-3X (A10VSO)

Selection guide for Sytrollix Di E 3010 with STDI Eli 3X (A10430)																				
		Dum	nps ¹⁾									Mot	ors ¹⁾							
		Pun	ıps ′							МОТ	-FC IC	2411	(self-	ventila	ated)					
Туре	NG	p _{cont} [bar]	p _{max} [bar]	n _{max} [rpm]	Q [l/min]	3 4000	4 4000	5.5 4000	7.5 4000	11 3800	15 3800	18.5 3800	22 3800	30 3800	37 2800	45 2800	55 2800	75 2800	90 2800	P _{nom} [I n _{max} [r
												p _{eff} [bar]							
A10VSO	071 100 140	280 280 280	315 350 350	2550 2300 2200	181 230 308	18	23 16	32 23 16	43 31 22	64 45 32	87 62 44	106 75 54	126 90 64	171 122 87	210 150 107	256 182 130	222 159	217	260	
	180	280	350	1800	324				17	25	34	42	50	68	83	101	124	169	202	
												K [%]							
Controller		Rexroth FvCA01.1		4K00 5K50 7K50 11K0 15K0 18K5 22K0 30K0 37K0		164	127 165	118 155	113 160	114 157 186	118 139 157	115 129 176	110 150 188	111 139		117				
		Ŗ		45K0 55K0 75K0 90K0										176	142 164	117 136 188	111 154 185	117 141	117	

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 62241

Controller: catalogs R999000241 (DE), R999000242 (EN)

Performance curve for DFE 5010 - self-ventilated

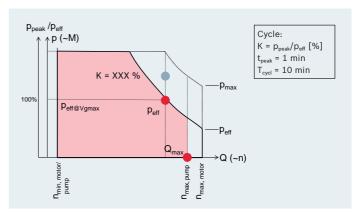
DFE 5010 with SYHDFEn-1X (A4VSO)

Selection guide for Sytronix DFE 5010 with SYHDFEn-1X (A4VSO)

		D	mps ¹⁾			Motors ¹⁾										
		Pul	mps				MOT-FC IC411 (self-ventilated)									
Type	NG	p _{cont}	P _{max}	n _{max}	Q	18.5	22	30	37	45	55	75	90			
		[bar]	[bar]	[rpm]	[l/min]	3800	3800	3800	2800 p _{eff} l	2800 [bar]	2800	2800	2800			
A4VSO	125 180 250 355	350 350 350 350	400 400 400 400	1800 1800 1900 1700	225 324 475 603	60	72	98 68	120 83 60	146 101 73 51	178 124 89 63	243 169 121 85	292 202 146 103			
									K [[%]						
Controller		Rexroth FvCA01.1		18K5 22K0 30K0 37K0 45K0 55K0 75K0		115 129 176	110 150 188	111 139 176	112 142 164	117 136 188	111 154 185	117 141	117			

¹⁾ The pump and motor can also be ordered separately as motor-pump-assembly MPE (see "Motor-pump-assemblies" starting on page 47) Note: For a detailed explanation of the tables, see page 10

Selection example for system key



Detailed component information:

Motors: see "Motors" starting on page 63

Pumps: data sheet 62242

Controller: catalogs R999000241 (DE), R999000242 (EN)

Performance curve for DFE 5010 - self-ventilated

Sytronix individual solutions

Individually configured systems

In addition to preconfigured systems in the FcP, SvP, and DFE Sytronix series, the Sytronix product range also provides the option of configuring **individual solutions**. These systems can be planned and configured by combining modules and individual components, using questionnaires on application criteria and system parameters, in collaboration with Rexroth specialists.

Rexroth – synonymous with planning security

- ▶ Sytronix product range for customized solutions
- ► Products with excellent dynamics and control accuracy
- ▶ Proven product quality for high machine reliability
- ▶ Industry-specific consulting and engineering support
- ► Global Rexroth presence and support

Components and modules for Sytronix systems can be found in "Components and modules" starting on page 46.

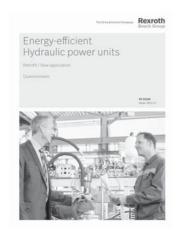
8 steps for a system solution

	Step	Example	Help
1	Determine system requirements ► Hydraulics schematic (open/closed circuit) ► General conditions (fluid, filtration, supply voltage, interface, or high-level control system, etc.) ► Load cycle (pressure, flow, worst case, etc.) ► Performance (control accuracy, dynamics)	Pressure supply for core shooter systems Open hydraulic circuit Constant pressure: 100 bar Average flow: 30 I/min Maximum flow: 100 I/min Fluid: HLP 46 Line voltage: 400 VAC Analog set points High dynamic performance	Guidelines for energy-efficient hydraulics assemblies Questionnaire
2	Select required Sytronix features Control quality Dynamics Open or closed loop Pressure or flow control Alternating pressure/flow control Force control, speed control, position control	SvP 7010 ► Pressure control ► High dynamic performance	FcP, SvP, DFE systems FcP: starting on page 13 SvP: starting on page 26 DFE: starting on page 34
3	Select pump ► Maximum pressure ► Maximum flow ► Minimum speed ► Open or closed loop	PGH4-3X/050 internal gear pump ► Continuous nominal pressure: 315 bar ► Maximum flow: 150 l/min ► Open circuit	SytronixSize program for system dimensioning Pumps starting on page 68
4	Determine drive requirements (Load cycle conversion using the pump displacement) ▶ RMS torque, maximum torque ▶ Average speed, maximum speed	Parameters ► RMS torque: 85 Nm ► Maximum torque: 118 Nm ► Average speed: 630 rpm ► Maximum speed: 2,050 rpm	SytronixSize program for system dimensioning
5	Select drive/motor combination ➤ Torques, speed ➤ Drive family ➤ Compact or modular power unit ➤ Electrical connection on the motor ➤ Motor cooling type ► Encoder	IndraDrive C with MPA01 HCS03.1E-W0100-A-05-NNBV MPA01-PGH4P-NN-VBB-M11EBHA-S3F-NN ► Stall torque: 105 Nm ► Maximum torque: 180.6 Nm ► Maximum speed: 2,400 rpm	SytronixSize program for system dimensioning Power units, motor-pumpassemblies, motors starting on page 46

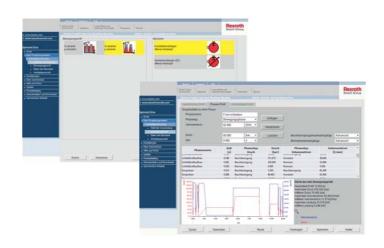
	Step	Example	Help
6	Determine controller configuration (IndraDrive only) ► Interface to the higher-level control system ► Encoder ► Inputs and outputs ► Safety technology	ADVANCED controller without bus communication CSH01.1C-NN-ENS-NNN-MA1-NN-S-NN-FW High performance No bus communication IndraDyn standard encoder Standard operator panel Analog I/O extension	Control units page 60
7	Define firmware functionality (for IndraDrive only) ► Basic OPEN LOOP or CLOSED LOOP package ► Extension packages ► Motion logic ► Technology functions	Basic CLOSED LOOP package with motion logic and SvP application software FWA-INDRV*-MPH-08VRS-D5-1-NNN-ML FWS_MLDSYx_IMC_xxVxx_D0_MP08 ▶ No extension packages ▶ Motion logic ▶ Application software for SvP systems	Firmware page 61
8	Select accessories Line filters and line chokes Braking resistors, brake units Additional capacity Electrical connections Engineering software Pressure transducer Mechanical connections	 Line filter NFD03.1-480-130 Line choke HNL01.1E-0362-N0080-A-500-NNNN Power cable RKL0042/005.0 Encoder cable RKG0047/005.0 Basic accessories HAS01.1-255-NNN-CN Shield connection HAS02.1-005-NNN-NN Pressure transducer SUP-E01-SYT-HM20-2X/250-H-K35-A-N 	Accessories starting on page 76 Motor-pump-assemblies starting on page 47 Engineering tool IndraWorks

Selection guides

Energy-efficient hydraulics assemblies – questionnaire


To implement a variable-speed drive solution, for retrofit or new applications, a customer-specific series of application conditions needs to be considered. This is in addition to the load profile of the machine. In hydraulics, critical factors such as the type of fluid, hydraulics schematic diagram, cooling requirements, and the presence of an accumulator can affect the configuration of a Sytronix system. Electrical parameters, such as supply voltage, the higher-level control system used, ambient temperatures, and performance required for the overall system are critical factors in the configuration of a Sytronix solution.

The questionnaire for energy-efficient hydraulic assemblies is intended as an aid for documenting all of the required information. Contact a Bosch Rexroth sales partner for more information.


SytronixSize software tool

Sizing components to meet the machine's energy requirement is key to an energy-efficient, cost-effective variable-speed drive solution. SytronixSize, Bosch Rexroth's design tool, is configured to provide the answers. The choice of hydraulic pump is made using the design criteria followed by selection of the electric motor and matching VFD or servo drive controller from the Bosch Rexroth product portfolio.

SytronixSize is only available for use by Bosch Rexroth applications specialists. Availability of SytronixSize to third parties is currently not planned due to legal restrictions. Inquire with a Bosch Rexroth sales partner for more information.

RE 62246

Components and modules

Rexroth offers a comprehensive range of pumps, power units, motors and control software for Sytronix variable-speed pump drives. Rexroth can provide support in the selection of individual components for custom designed Sytronix systems.

Motor-pump-assemblies

47

Motor and pumps are available as preconfigured assemblies.

Drives

54

Drives for synchronous or standard motors.

Motors

63

Synchronous and asynchronous motors for pump drives in Sytronix systems.

Pumps

68

Internal gear or axial piston pumps for a wide range of system pressures.

Accessories

76

Extensive range of Rexroth accessories including line filters, braking resistors, line chokes, power and encoder cables, and auxiliary components (interconnection kits, attachment kits and assembly kits).

Motor-pump-assemblies

A selection of standard motor-pump-assemblies is available for Sytronix variable-speed pump drives, consisting of a motor, coupling and pump. The flexible solutions of preassembled modules are available in a variety of mounting configurations.

Assembly MPA01

The MPA01 assembly was developed specifically for the SvP 7010 system and features direct motor-pump coupling.

Assembly MPAS1

Like the MPA01, the MPAS1 assembly was also developed for the SvP 7010 system, but uses a conventional motor-pump coupling.

Assemblies MPES2 and MPES3

The MPES2 and MPES3 assemblies are used with FcP 5010, FcP 7010, DFE 5010, and DFE 7010 systems. These assemblies use conventional motor-pump coupling; MPES2 is designed for the European and Asian markets, while the MPES3 is designed for the North American market.

Motor-pump-assembly MPA01 with MSK & PGH

- ► Direct coupling
- ► Reduced overall length
- ▶ Horizontal and vertical mounting possible

Features

- Available with 3 motor configurations
- ► Available with 8 pump configurations
- ► Mounting options: flange, foot mount, or motor feet (only MSK133)

Product description

The MPA01 with direct coupling provides a compact solution, offering a range of motor and pump options.

Detailed information:

Assembly instructions R911339498 (DE), R911339499(EN), R911341599(DE), R911341600(EN)

Motor	MSK101	MSK133	MSK133
Overall length	C, D, E, F	B, C, D, E	B, C, D, E
Cooling	Forced-ventilated	Forced-ventilated	Liquid-cooled
Pump	PGH4	PGH5	PGH5
Nominal size	2063	63160	63160

Motor-pump-assembly MPAS1 with MSK & PGM, PGH

- ► Standard motor-pump coupling
- ► Horizontal and vertical mounting possible

Features

- ► Available with 3 motor configurations
- ► Available with 2 pump configurations
- ▶ Mounting options: flange, foot mount

Product description

The MPAS1 utilizes conventional motor-pump coupling using a bell mount adapter.

Detailed information:

See media directory

Motor	MSK071	MSK101	MSK101	MSK133
Overall length	C, D, E,	C, D, E, F	C, D, E, F	B, C, D, E
Cooling	Forced-ventilated	Forced-ventilated	Forced-ventilated	Forced-ventilated
Pump	PGH2, PGH3, PGH4	PGM4	PGH4, PGH5	PGM5
Nominal size	563	2563	20250	80125
Motor			MSK133	MSK133
Overall length			B, C, D, E	B, C, D, E
Cooling			Forced-ventilated	Liquid-cooled
Pump			PGH5	PGH5
Nominal size			63250	63250

Motor-pump-assembly MPES2 with MOT-FC & PGF, PGH, A10, A4, SYDFEn-3X, SYHDFEn-1X

Features

- ▶ Wide range of motor-pump-assemblies
- Available with different pump configurations, depending on the pump type
- ▶ Mounting options: varies, based on motor size
- ► Horizontal and vertical mounting possible

Product description

MPES2 is designed for the European and Asian markets. The MPES2 assembly uses a conventional motor-pump coupling and a bell mount adapter.

Motor		MOT-FC	MOT-FC	MOT-FC	MOT-FC
Performance	kW	1.511	1.515	18.590	1.590
Cooling		Self-ventilated	Self-ventilated	Forced-ventilated	Self-ventilated
Pump		PGF2	PGH2, PGH3, PGH4, PGH5	PGH4, PGH5	A10VZO-EZ4 (2-point adjustment)
Nominal size		622	5250	25250	10180
Motor		MOT-FC	MOT-FC	MOT-FC	
Performance	kW	18.590	390	18.5315	
Cooling		Self-ventilated	Self-ventilated	Self-ventilated	
				oon vontnatou	
Pump		A4VSO-EZ (2-point adjustment)	SYDFEn-3X	SYHDFEn-1X	

Motor-pump-assembly MPES3 with MOT-FC & PGF, A10

Features

- ▶ Wide range of motor-pump assemblies
- ► Available with different pump configurations, depending on the pump type
- ► Mounting options: varies, based on motor size

Product description

MPES3 is designed for the North American market. The MPES3 assembly uses a conventional motor-pump coupling and a bell mount adapter.

Can be mounted horizontally or vertically.

Motor		MOT-FC	MOT-FC
Performance	hp	220	2125
Cooling		Self-ventilated	Self-ventilated
Pump		PGF2	A10VZO-EZ4
Nominal size		622	10180

Variable-speed pressure and control system SYHDFEn-1X

- ► Infinitely variable flow control
- ▶ Long service life
- ► Real-time mode for non-cyclic processes
- ▶ "Teach-in" mode for cyclic processes
- ► Universal through drive

Features

- ▶ Pressure transducer
- ► A4VSO axial piston variable displacement pump
- ► VT-DFPn-2X proportional valve with integrated electronic control system
- Swivel angle transducer
- ▶ Suitable for HFC fluids as per RD 92053
- ► Mineral oil in accordance with DIN 51524 (HL/HLP)
- ▶ Use in Sytronix DFE systems

Product description

The SYHDFEn-1X electrohydraulically controls the displacement, pressure and power/torque of an axial piston variable displacement pump.

The control utilizes the following components:

- ► A4VSO axial piston variable displacement pump
- ► VT-DFPn-2X proportional pilot valve, with spool position feedback and integrated electronics.
- ► Swivel angle transducer
- Pressure transducer

Detailed information:

Data sheet 62242

Nominal size			125	180	250	355
Displacement	V _{g max}	cm ³	125	180	250	355
Max. speed	n _{0 max}	rpm	1800	1800	1800	1500
Min. speed	n_{min}	rpm	50	50	50	50
Max. flow at max. speed	$q_{\scriptscriptstyle extsf{v0 max}}$	l/min	225	324	450	533
Max. flow at n_E = 1500 rpm		l/min	186	270	375	533
Max. performance (△p = 280 bar) at max. speed	P _{0 max}	kW	131	189	263	311
Max. performance ($\triangle p$ = 280 bar) at n_E = 1500 rpm		kW	109	158	219	311
Mass (without fluid)	m	kg	88	102	184	207
Suction pressure	р	bar	0.830	0.830	0.830	0.830
Max. permissible operating pressure	p_{max}	bar	350	350	350	350
Min. operating pressure	p_{min}	bar	≥20	≥20	≥20	≥20

Variable-speed pressure and control system SYDFFn-3X

- ► Infinitely variable flow control
- ▶ Long service life
- ► With pulsation damping
- ► High-speed version
- ► Universal through drive

Features

- Pressure transducer (order separately)
- SYDZ pre-load sequence valve (optional)
- ► A10VSO.../32 axial piston variable displacement pump
- ► VT-DFPn-2X proportional valve with integrated electronic control system
- ► Swivel angle transducer
- ► Mineral oils (HL, HLP) in accordance with DIN 51524, part 2
- ▶ Use in Sytronix DFE systems

Product description

The SYDFEn-3X electrohydraulically controls the displacement, pressure and power/torque of an axial piston variable displacement pump.

The control utilizes the following components:

- ► A10VSO.../32 variable displacement axial piston pump
- ► VT-DFPn-2X proportional pilot valve, with spool position feedback and integrated electronics
- ► Swivel angle transducer
- ▶ Pressure transducer
- ► SYDZ pre-load sequence valve with pressure limiting function

Detailed information:

Data sheet 62241

Nominal size			71	100	140	180
Displacement	V _{g max}	cm ³	71.1	100	140	180
Max. speed	n _{0 max}	rpm	2550	2300	2200	1800
Min. speed	n_{min}	rpm	50	50	50	50
Max. flow at max. speed	$q_{\scriptscriptstyle extsf{v0 max}}$	l/min	181	230	308	324
Max. flow at n _E = 1500 rpm		l/min	106.7	150	210	270
Max. performance (△p = 280 bar) at max. speed	P _{0 max}	kW	84	107	144	151
Max. performance ($\triangle p$ = 280 bar) at n_E = 1500 rpm		kW	50	70	98	125
Mass (without through drive, incl. pilot valve)	m	kg	49	71	75	80
Nominal pressure	p_{nom}	bar	280	280	280	280
Max. permissible operating pressure	p_{max}	bar	350	350	350	350
Min. operating pressure	$oldsymbol{p}_{min}$	bar	≥20	≥20	≥20	≥20

Drives

Drives

Drive units are converters or inverters based on the IndraDrive family portfolio or frequency converters Rexroth Fv (VFD). The IndraDrive units consists of a power component and a control section, for the control of servo and standard motors. The part of the drive controller equipped with all the control functions and interfaces for installation in the power unit is referred to as the control section. The power component contains the power electronics to control the motors and is used to hold the control section. The converter (IndraDrive C - HCS) takes the line voltage with its fixed amplitude and frequency and generates a three-phase alternating current with variable amplitude and frequency.

The inverter (IndraDrive M - HMS) takes the DC bus voltage and generates a three-phase alternating current with variable amplitude and frequency.

The frequency converter Rexroth Fv (VFD) includes the power and control function in one device to control standard asynchronous motors. The VFD converts the fixed amplitude and frequency line power into variable amplitude and frequency three-phase alternating current.

IndraDrive - compact drives

- ► Power range from 1.5 kW to 630 kW, with maximum current from 12 A to 1,535 A
- ► High overload capacity
- Compact design for single-axis applications
- Can be connected to a converter for cost-effective solutions
- ▶ Direct line connection from 200 V to 500 VAC

Rexroth Fv VFD

The Rexroth Fv VFD is the drive solution optimized for automation applications with a power range up to 90 kW.

Firmware

Unit-specific software for automation applications. With the IndraDrive servo drives and the Rexroth Fv VFDs, firmware is stored in read-only memory. IndraDrive has the option of updating the firmware using CompactFlash.

Bosch Rexroth AG, RE08043, 2014-03

Drives - IndraDrive Converter HCS02.1E-W0028/-W0054/-0070

- ▶ 2.5x overload capacity
- ▶ Maximum current from 28 A to 70 A
- ► Can be connected to a converter for cost-effective solutions
- ▶ Direct line connection from 200 V to 500 VAC

Features

- ► Continuous power from 1.5 kW to 11 kW
- ► Internal or external braking resistors

Product description

IndraDrive HCS02 series of drives integrate inverter and power supply in one unit. Contains line connections for compact construction making it suitable for single-axis applications.

Detailed information:

Instructions R911309635 (DE), R911309636 (EN) Catalog R999000018 (DE), R999000019 (EN)

Technical data

Continuous current ¹⁾	А	11.328.3
Maximum current	А	28.370.8
DC bus continuous power without/with choke	kW	5.19/5.114
Maximum output without/with choke	kW	814/1019
Line voltage	V	3 AC 200500, 1 AC 200250 (±10 %)
Continuous input line current	А	1330
Dependence of output on line voltage		at U _{LN} < 400 V: 1% power reduction per 4 V
		at $U_{LN} > 400 \text{ V}$: 1% power gain per 5 V
Maximum braking power	kW	1025
Control voltage, external	V	DC 24 ±20% (DC 24 ±5% when supplying motor holding brake)
Power consumption	W	1423
Dimensions (H x W x D)	mm	65 to 105 x 352 x 252
Weight	kg	3.86.8

All data for nominal rating at 3 AC 400 V line voltage and 4 kHz switching frequency. 1) In case of output frequency less than 4 Hz the output current will be reduced.

Drives - IndraDrive Converter HCS03.1E-W0070/-W0100/-W0150/-W0210

- ▶ Maximum current from 70 A to 210 A
- Can be connected to a converter for cost-effective solutions
- ▶ Direct line connection from 400 V to 500 V

Features

- Continuous power with/without choke kW 13 to 42/25 to 85
- ► High overload capacity

Product description

IndraDrive HCS03 series of drives integrate inverter and power supply in one unit. Contains line connections for compact construction making it suitable for singles axis applications.

Detailed information:

Instructions R911309635 (DE), R911309636 (EN) Catalog R999000018 (DE), R999000019 (EN)

Technical data

Continuous current ¹⁾	А	45145
Maximum current	А	70210
DC bus continuous power without/with choke	kW	1342/2585
Maximum output without/with choke	kW	2068/40124
Line voltage (+10%/-15%)	V	3 AC 400500
Continuous input line current	А	50146
Dependence of output on line voltage		at U _{LN} < 400 V: 1% power reduction per 4 V decrease in voltage
Maximum braking power	kW	42137
Control voltage, external	V	DC 24 ±20% (DC 24 ±5% when supplying motor holding brake)
Power consumption	W	22.530
Dimensions (H x W x D)	mm	125350 x 440 x 315
Weight	kg	1338

All data for nominal rating at 3 AC 400 V line voltage and 4 kHz switching frequency. 1) In case of output frequency less than 4 Hz the output current will be reduced.

Drives - IndraDrive Converter HCS04

- ► Integrated RFI filter for industrial environments
- ► Through-hole technology
- ▶ Optimized for mounting in control cabinets
- ► Intelligent limitation and protection
- ► Decoupled DC control terminals
- ► Worldwide approval

Features

- ► Wide range of power and voltage
- ▶ Robust construction
- ► Comprehensive options

Product description

IndraDrive HCS04 series converters are used to drive three-phase asynchronous and synchronous motors. They feature state-of-the-art components and technology and are suitable for drive and regenerative operation of motors in both rotary directions. When braking, regenerated energy is dissipated in braking resistors. HCS04.2E converters are stand-alone units with an internal controller and power supply and

utilize forced air cooling.

Detailed information:

Data sheet R911327333 (DE), R911327334 (EN) Catalog R999000018 (DE), R999000019 (EN)

Technical data

Brake chopper				
Maximum current 60 s A High continuous load¹¹: 3111,351; high overload²¹: 3 Maximum current 2 s A High continuous load¹¹: 3501,520; high overload²¹: 3 Continuous input line current³¹ A High continuous load¹¹: 2261,037; high overload²¹ Line voltage V 3 AC 380480 (+1) Brake chopper Permanent braking power kW Maximum brake power 10 s kW Control voltage, external V DC	Typical motor rating	High continuous load ¹⁾ : 132630; high overloa	kW	nuous load ¹⁾ : 132630; high overload ²⁾ : 110500
Maximum current 2 s A High continuous load¹¹: 3501,520; high overload²¹: 3 Continuous input line current³¹ A High continuous load¹¹: 2261,037; high overload²¹ Line voltage V 3 AC 380480 (+100) Brake chopper International Permanent braking power kW Maximum brake power 10 s kW Control voltage, external V DC	Continuous current	High continuous load ¹⁾ : 2591,126; high overloa	Α	ous load ¹⁾ : 2591,126; high overload ²⁾ : 215930
Continuous input line current³) A High continuous load¹): 2261,037; high overload²) Line voltage V 3 AC 380480 (+1) Brake chopper International power kW Maximum brake power 10 s kW Control voltage, external V DC	Maximum current 60 s	High continuous load¹¹: 3111,351; high overload	Α	us load ¹⁾ : 3111,351; high overload ²⁾ : 3231,395
Line voltage V 3 AC 380480 (+10) Brake chopper International December Remainent braking power RW Maximum brake power 10 s RW Control voltage, external V DC	Maximum current 2 s	High continuous load¹¹: 3501,520; high overload	А	ıs load ¹⁾ : 3501,520; high overload ²⁾ : 3551,535
Brake chopper	Continuous input line current ³⁾	High continuous load¹¹: 2261,037; high overloa	А	ous load¹¹: 2261,037; high overload²¹: 194834
Permanent braking power kW Maximum brake power 10 s kW Control voltage, external V DC	Line voltage	3 AC 380480	V	3 AC 380480 (+10%/-15%)
Maximum brake power 10 s kW Control voltage, external V DC	Brake chopper	Inte		Internal/external
Control voltage, external V DC	Permanent braking power		kW	85400
	Maximum brake power 10 s		kW	165750
Dimensions (H v W v D) mm 330 1110 v 782 1	Control voltage, external	1	V	DC 24 (±20%)
5001,110 × 7021	Dimensions (H x W x D)	3301,110 x 782	mm	3301,110 x 7821,150 x 380
Weight, approx. kg	Weight, approx.		kg	74300

All data for nominal rating at 3 AC 400 V line voltage and 4 kHz switching frequency with line or DC choke.

 $^{^{1)}}$ Overload 20% for 60 s, 35% for 2 s $^{2)}$ Overload 50% for 60 s, 65% for 2 s $^{3)}$ With DC choke HLL

Drives - IndraDrive Power supply HMV01.1E, HMV01.1R, HMV02.1R

- ► Energy-saving line regeneration (optional)
- ► Integrated line contactor
- ► Integrated braking resistor

Features

- ▶ Power range from 18 kW to 120 kW
- ▶ Direct line connection from 400 V to 480 V
- ▶ Protection to IP20

Product description

IndraDrive HMV power supply units are used in conjunction with modular HMS inverters.

Detailed information:

Catalog R999000018 (DE), R999000019 (EN)

Technical data

Line voltage	V	3 AC 400480 (+10%/-15%)
Supply frequency	Hz	4862
DC bus continuous output	kW	18120
Overload capacity		1.5x/1.52.5x
Suitable for cabinet depth	mm	HMx01: 400
Line contactor/brake chopper/braking resistor		Internal ¹⁾ / internal ¹⁾
Control voltage DC 24 V		External
Environmental rating		IP20
Installation height	m	1,000 above sea level, with derating to 4,000 ²⁾
Ambient temperature	°C	0 to +40, with derating to +55
Cooling type		Air cooling
CE mark		Low Voltage Directive 73/23/EEC, EMC Directive 89/336/EEC
Certifications/EMC		EN 61800-5-1, EN 61800-3, UL 508C, C22.2 No. 14-05/C3 (EN 61800-3)

All data for nominal rating at 3 AC 400 V line voltage and 4 kHz switching frequency. $^{1)}$ Not applicable for HMV01.1R-W0120; $^{2)}$ HCS04 only up to 3,000 m.

Drives - IndraDrive Inverter HMS01, HMS02

- ► Space-saving design with multi-axis applications
- ► Can be powered via power supply unit
- ▶ Power sharing via common DC bus
- ► Can be connected to a converter for cost-effective solutions

Features

- ► Modular single-axis inverter
- ► Single-axis inverter with maximum current from 20 A to 350 A

Product description

IndraDrive HMS inverter series for single and dual axes in the modular drive system. They have a power output to drive a motor and operate with HMV01/02 supply units and HCS02 and HC03 drive controllers.

Detailed information:

Instructions R911309635 (DE), R911309636 (EN) Catalog R999000018 (DE), R999000019 (EN)

Technical data

Continuous current	Α	12.1250
Maximum current	А	20350
DC bus capacity	mF	-/0.14/0.27
Control voltage, external	V	DC 24 ±20% (DC 24 ±5% when supplying motor holding brake)
Power consumption without control unit and motor brake	W	10218 (including HAB blower unit)
Continuous current without control unit and motor brake	Α	0.49.1 (including HAB blower unit)
Width	mm	50350
Height	mm	352/440 ¹⁾
Depth	mm	252/309
Weight	kg	5.331.7

All data apply to nominal rating at 3 AC 400 V line voltage and 4 kHz switching frequency

 $^{^{\}mbox{\tiny 1)}}\mbox{Overall height HSM01.1N-W0350}$ with auxiliary fan HAB: 748 mm

Drives - IndraDrive Control unit CSH01 ADVANCED

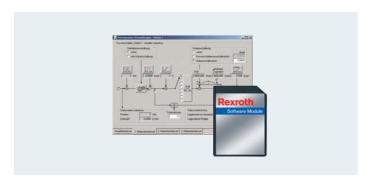
- ▶ Use with Sytronix SvP
- ► Option: safety on board
- Available with standard performance and functionality, CSB01 BASIC version, for use with Sytronix

Features

- ▶ Solution for standard and high-end applications
- ▶ Integrated motion logic with advanced features
- Open interfaces for international use
- ► On request, certified safety technology per EN 13849-1 and EN 62061

Product description

The ADVANCED control unit offers the highest performance and dynamics. In addition to performance, a wide range of control communications and encoder interfaces are available. Digital and analog inputs and outputs are available in the base controller using an I/O expansion. The controller can be equipped with certified safety technology per EN 13849-1 and EN 62061, as an option. The ADVANCED controller is an ideal platform for a drive-integrated PLC with IndraMotion MLD.


Using a PC with the engineering tool IndraWorks, a complete configuration and startup can be performed.

Detailed information:

Catalog R999000018 (DE), R999000019 (EN)

Control communication	Optional: analog interface, PROFIBUS, SERCOS III, ProfiNet, EtherCat, EtherNet/IP,
	CANopen, DeviceNet
Digital inputs	7
Digital inputs for measuring probe	2
Digital inputs/outputs (configurable)	4
Analog inputs	1
Analog outputs	2
Relay outputs	1

Firmware FWS

- ► Hydraulic power unit (HPU): constant pressure control
- ► Injection molding control (IMC)
- ► Position force control (PFC)

Features

- ► All standard functions included
- ► Function extensions
- ► Industry-specific functions
- ► Integrated IEC-compliant logic

Product description

The stock firmware can perform standard drive functions – from simple V/f control through positioning control mode. Extension packages provide options of electronic synchronization, servo functions and main spindle drives. The freely-programmable motion logic with integrated PLC conforming to IEC 61131-3 and ready-to-use functions enable simple execution of complex machine processes.

Detailed information:

Catalog R999000018 (DE), R999000019 (EN)

Technology functions	HPU	IMC	PFC
FcP 7010	p = const		
SvP 7010		p/Q control	x/F control

Rexroth Fv Frequency Converter for Sytronix FVCA01.1 (-XXX-P002)

- Multiple operating modes to suit a variety of applications
- ► Simple operation and maintenance
- ► Removable fan
- ► LCD operator interface panel
- ► Advanced functionality and high performance
- ▶ Optional PROFIBUS control communication

Features

- Quality and reliability
- ► Worldwide service
- ▶ CE-compliant
- ▶ UL-listed

Product description

The Rexroth Fv VFD for Sytronix is an optimal drive solution for automation of a variety of applications with power ratings up to 90 kW. It can operate in voltage/frequency (V/f), sensorless vector control (SVC), or field-oriented vector control (FOC) modes to suit a wide range of applications.

Detailed information:

Instructions R912004739 (EN)

Rated motor power	kW	1.590
Nominal motor voltage	V	0480
Line voltage	V AC	380480
Supply frequency	Hz	5060
Rated continuous current	А	4183
Overload capacity	%	200 (in 1 s)/150 (in 1 min)
Motor cable length (internal line filter C3)	m	5/10
Motor cable length (external line filter C3)	m	50/75
Ambient temperature	°C	-10+40
Controller		PID
Bus systems		Modbus/PROFIBUS
Display		LCD: pressure, speed, voltage, current, etc.

Motors

Synchronous and asynchronous motors for use in Sytronix variable-speed pump drive systems.

IndraDyn S synchronous servo motors (MSK)

- ► Maximum torques up to 631 Nm
- ► Environmental protection: IP65
- ► Choice of cooling systems
- ► High dynamic performance
- ► Compact design

IndraDyn A asynchronous servo motors (MAD)

- ▶ Rated outputs up to 93 kW
- ► Maximum speeds up to 11,000 rpm
- ▶ Encoder systems for a wide range of applications
- ► Environmental protection: IP65
- ► Motor designed for easy maintenance

Standard asynchronous motors (MOT-FC)

- ► Energy efficiency class IE2 (Europe/Asia)
- ► NEMA Premium efficiency (North America)
- ► Low "total cost of ownership"
- ► Standard product series

IndraDyn synchronous servo motor MSK071, MSK101, MSK133

- ► Compact and powerful
- ▶ Broad performance range
- ▶ Multiple models to match load requirements
- ► Maximum torques up to 631 Nm
- ► Maximum speeds up to 6,000 rpm

Features

- ► Maximum torques up to 631 Nm
- ► Axial or radial blower optional
- ► Environmental protection: IP65
- ► Choice of cooling systems

Product description

Outstanding features of the MSK range of motors include broad power range and model variants to match load requirements. Encoders are available in single or multi-turn versions. Additional options include shaft keyways, holding brakes, and increased runout to match any application. For applications with high continuous power operation, blowers are available for axial and radial installation.

Detailed information:

Catalog R999000018 (DE), R999000019 (EN)

Туре			MSK071	MSK101	MSK133
Maximum speed	$n_{\scriptscriptstyle{Max}}$	rpm	35006000	33006000	3300
Continuous torque at stall	M ₀	Nm	1223	3270	152293
Maximum torque	$M_{\sf Max}$	Nm	4484	110231	320631
Continuous current at stall	I _o	А	5.220	14.958.3	63115
Maximum current	I_{Max}	А	23.490.1	67.1262.4	160305
Moment of inertia	J	kgm²	0.001730.0029	0.00650.0164	0.04760.09
Flange size	Α	mm	140	192/208	260
Motor length	О	mm	272352	350688	582732
Max. motor height	Н	mm	202	262/276	370
Shaft diameter	D	mm	32	38	48
Weight		kg	13.923.5	28.353.5	91.6146.0

IndraDyn Asynchronous servo motor MAD100, MAD130, MAD160, MAD180

- ► Maximum torque 850 Nm
- Optional MAF version with liquid cooling for higher continuous outputs

Features

- ▶ Encoder systems for a wide range of applications
- ► Environmental protection: IP65
- ▶ Motor designed for easy maintenance

Product description

The high power density of the MAD motor series makes them ideal for use in metal forming machines with output torque up to 850 Nm.

High-resolution single and multi-turn encoders along with outstanding true running quality guarantee maximum accuracy. The motor's environmental protection rating IP65 includes the fan motor, making it suitable for use in harsh industrial environments. The easy-maintenance design of the motor allows for fan assembly exchange while the motor is in service.

Detailed information:

Catalog R999000018 (DE), R999000019 (EN)

Туре			MAD100	MAD130	MAD160	MAD180
Rated torque	M _N	Nm	3470	95180	220/240	325/390
Maximum torque	M _{Max}	Nm	75.1153.6	208.8 395.6	483.9/528.2	715.5/857.8
Rated power	P_{N}	kW	1.83.7	59.4	11.5/12.6	17/20.4
Rated current	I _N	А	5.310.1	12.824.2	26.1/27.6	38.2/39.7
Moment of inertia	J_{R}	kgm²	0.0190.0392	0.0840.164	0.25/0.311	0.458/0.594
Flange size	Α	mm	192	260	316	320
Motor length	0	mm	462612	570770	748/838	979/1,089
Max. motor height	Н	mm	287	368	420	447/469
Shaft diameter	D	mm	32	42	55	60
Weight		kg	4372	100165	201/238	334/403

Rexroth standard asynchronous motor MOT-FC: Europe/Asia

Features

- ▶ Motor design conforming to DIN EN 60034 (IEC 72)
- ► Standard asynchronous motors MOT-FC (IEC) for use outside of North America
- ► Environmental protection to IP55
- ► For use with VFD or IndraDrive Bosch Rexroth recommends MOT-FC standard asynchronous motors for FcP 5010/7010 and DFE 5010/7010.

Product description

Low voltage three-phase squirrel cage motors for VFD operation (inverter duty).

Rexroth's MOT-FC motor family is optimized for use in FcP 5010/7010 and DFE 5010/7010 with frequency converters.

Detailed information:

See ZN10601-2

Mechanical version		IEC
Power range	kW	1.5315
Nominal voltage	V	< 3 kW (230/460 V); > 3 kW (400/690 V)
Number of poles 1500 rpm		4
Energy efficiency		IE2
Type of construction (EN 60034-7)		IM B35; IM B 5, IM V1
Housing material		Aluminum (1.57.5 kW), gray cast iron (from 11 kW)
Cooling (EN 60034-6)		IC 411 (self-ventilated); IC 416 (forced-ventilated)
Permissible ambient temperature	°C	-20+40
Permissible installation height	m	1000
Motor/winding protection (DIN EN 60947-8)		PTC
Terminal box position (IEC 60034-7 AMD 1)		Above

Standard asynchronous motor MOT-FC: North America

Features

- ► Motor version per NEMA MG1
- ► Standard asynchronous motors MOT-FC (NEMA) for use in North America
- ► Environmental protection to IP55
- ► For use with VFDs and IndraDrive, Bosch Rexroth recommends MOT-FC standard as synchronous motors for FcP 5010/7010 and DFE 5010/7010.

Product description

Low voltage three-phase squirrel cage motors for VFD operation (inverter duty).

The MOT-FC motor family is optimized for use in FcP 5010/7010 and DFE 5010/7010 with frequency converters.

Detailed information:

See ZN10601-2

Mechanical version		NEMA
Power range	hp	2125 (larger powers on request)
Nominal voltage	V	208230/460 V
Number of poles at 1800 rpm		4
Energy efficiency		NEMA Premium efficiency
Type of construction (EN 60034-7)		Vertical or horizontal, with foot and flange, only flange
Housing material		Gray cast iron
Cooling (EN 60034-6)		TEFC (self-ventilated) TEBC (forced-ventilated)
Permissible ambient temperature	°C	-20+40
Permissible installation height	m	1000
Motor/winding protection (DIN EN 60947-8)		PTC
Terminal box position (IEC 60034-7 AMD 1)		Left

Pumps

A variety of pump types can be used with Sytronix variablespeed drives.

Internal gear pumps

Internal gear pumps, type PGF-2X, PGH-2X, PGH-3X, and PGM-4X, are suitable for use in Sytronix systems. Operating in open hydraulic circuits, they are capable of a maximum continuous pressure of 315 bar, dependent on the type. Reverse rotation is permissible for 2 quadrant operation. The internal gear pumps are ideal for low noise requirements and use in pressure holding operation due to low internal leakage.

Axial piston pumps

The series A10 and A4 axial piston pumps are also suitable for use in Sytronix systems.

The A10 series can be used in pressure holding operation for long duration due to leakage flow being externally drained. They can also deliver flow in both directions for closed circuit operation, and additionally be used as motors.

The A4 series axial piston pumps are very robust and have proven successful in many press applications due to large displacements and pressure capability up to 400 bar. Suitable for extended pressure holding, these pumps are ideal for use in Sytronix drives thanks to an external leakage drain and wide range of drive speeds.

Internal gear pump PGF-2X

- ▶ Long service life
- ▶ Suitable for a wide range of viscosities and speeds
- ► Excellent suction characteristics
- ► Can be used in a variety of system sizes and combinations
- ► Can be combined with other pumps

Features

- ► Fixed displacement
- ► Low operating noise
- ► Low flow ripple
- ► High efficiency

Product description

PGF fixed displacement internal gear pumps are pressurebalanced to minimize internal leakage. They are suitable for low to medium power Sytronix drives, up to mid-pressure operation in industrial applications, such as machine tool applications

Detailed information:

Data sheet 10213

Frame size			2
Nominal size		NG	622
Displacement		cm ³	6.522.0
Pressure	p_{nom}	bar	2101)
	p_{max}	bar	250
Speed	n_{\min}	rpm	200
	n_{max}	rpm	3600
Flow ²⁾	q_{v}	l/min	9.431.9
Fluid			HL mineral oil (DIN 51524 part 1); HLP mineral oil (DIN 51542 part 2); HEES fluids (DIN ISO 15380); HEPR fluids (DIN ISO 12380)
Temperature	HLP fluid	°C	-20+100
	Ambient	°C	-20+60
Filtration class		Class	20/18/15

 $^{^{1)}}$ When NG = 22: p_{nom} = 180; p_{max} = 210; n_{max} = 3000

²⁾ Measured at n = 1450 rpm and p = 10 bar

Internal gear pump PGH-2X

- ▶ Size 2: Nominal size 5 to 8
- ▶ Size 3: Nominal size 11 to 16
- Maximum pressure 350 bar
- ► Maximum displacement 16 cm³
- ► Series 2X

Features

- ► Fixed displacement
- ► Low operating noise
- ► Low flow ripple
- High efficiency at low speeds and viscosities due to dynamic pressure balancing
- ► Suitable for a wide range of viscosities and speeds
- Can be used in a variety of system sizes and combinations

Product description

PGH fixed displacement internal gear pumps are pressure balanced to minimize internal leakage. The driven pinion shaft is supported by hydrodynamic bearings and drives an internal toothed ring gear. Fluid is pumped within the gear tooth cavities and a sickle-shaped segment assembly. Axial sealing plates are dynamically pressure-balanced to ensure optimal sealing of the pump gears.

Detailed information:

Data sheet 10223

System size			2	3
Nominal size			58	1116
Displacement	V _g	cm ³	5.248.2	11.016.0
Speed	n_{min}	rpm	600	600
	n _{max}	rpm	3000	3000
Flow ¹⁾	$q_{\scriptscriptstyle m V}$	l/min	7.511.8	15.823.0
Pressure	p_{nom}	bar	315	315
	p_{nom}	bar	350	350
Temperature	HLP fluid 2)	°C	-10+80	-10+80
	Ambient	°C	-20+80	-20+80
Filtration class		Class	20/18/15	20/18/15

¹⁾ Measured at n = 1450 rpm and p = 10 bar

²⁾ HLP mineral oil (DIN 51524) part 2

Internal gear pump PGH-3X

- ▶ Size 4: Nominal size 20 to 50
- ▶ Size 5: Nominal size 63 to 250
- ► Maximum pressure 350 bar
- ► Maximum displacement 250 cm³
- ► Series 3X

Features

- ► Fixed displacement
- ► Low operating noise
- ▶ Low flow ripple
- ► High efficiency, even at low speeds and viscosities due to dynamic pressure balancing
- ▶ Suitable for a wide range of viscosities and speeds
- ► Suitable for use with HFC fluid
- ► For more information on pressure fluids, see the data sheet.

Product description

PGH fixed displacement internal gear pumps are pressure balanced to minimize internal leakage. The driven pinion shaft is supported by hydrodynamic bearings and drives an internal toothed ring gear. Fluid is pumped within the gear tooth cavities and a sickle-shaped segment assembly. Axial sealing plates are dynamically pressure-balanced to ensure optimal sealing of the pump gears.

Detailed information:

Data sheet 10227

System size			4	5
Nominal size			2063	63250
Displacement	V _g	cm ³	20.165.5	64.7250.5
Speed	$n_{\scriptscriptstyle min}$	rpm	200	200
	n _{max}	rpm	3000	3000
Flow ¹⁾	$q_{\scriptscriptstyle ee}$	l/min	28.994.1	92.8359.6
Nominal pressure, continuous	$p_{\scriptscriptstyle { m N}}$	bar	210315	135315

 $^{^{1)}}$ Measured at n = 1450 rpm and p = 10 bar

Internal gear pumps PGM-4X

- ▶ Size 4: Nominal size 25 to 63
- ► Size 5: Nominal size 80 to 125
- ► Maximum pressure 210 bar

Features

- ▶ Fixed displacement
- ▶ Very low operating noise
- ► Low flow ripple
- High efficiency at low speeds and viscosities due to dynamic pressure balancing
- ► Suitable for a wide range of viscosities and speeds

Product description

PGM-4X fixed displacement internal gear pumps are pressure-balanced to minimize internal leakage. Available in large displacements and suitable for medium pressure operation, these pumps are ideally suited for variable-speed operation along with frequent pressure cycling and are ideal for use in plastics processing machines.

Detailed information:

Data sheet 10229

System size			4	5
Nominal size			2563	80125
Displacement		cm ³	25.365.5	81.4125.3
Pressure	p_{nom}	bar	175	175
	p_{max}	bar	210	210
Speed	n_{min}	rpm	200	200
	n_{max}	rpm	3000	3000
Flow ¹⁾	q_{v}	l/min	36.394.0	116.9179.8
Fluid			HLP mineral oil (DIN 51524) part 2	HLP mineral oil (DIN 51524) part 2
Fluid temperature – HLP		°C	-10+80	-10+80
Ambient temperature		°C	-20+60	-20+60
Filtration class			20/18/15	20/18/15

¹⁾ Measured at n = 1450 rpm and p = 10 bar

Axial piston pumps A4VSO

- ► Variable displacement
- ► Excellent suction characteristics
- ▶ Low noise

Features

- ▶ Long service life
- ▶ HFC operation with a special version, see RD 92053
- ▶ Mineral oils and HFD pressure fluids

- ► Modular design
- ► Fast control times
- ► Multiple through-drive options
- ► Visual swivel angle indicator
- ► No restrictions on mounting position
- ► Operation with HF fluid with restrictions

Product description

A4VSO axial piston variable pumps feature a swashplate design and are suitable for open circuit operation.

Detailed information:

Data sheet 92050

Nominal size			40500
Displacement		cm ³	40500
Pressure	p_{nom}	bar	350
	p_{max}	bar	400
Speed	n_{min}	rpm	On request
	n_{max}	rpm	19003200
Flow ¹⁾	q_{v}	l/min	60533
Pump operation			Yes
Motor operation			No
Performance	P_{max}	kW	35311
$(\triangle p = 350 \text{ bar}; V_{g \text{ max}}; n = 1500 \text{ rpm})$			
Torque ($\triangle p = 350 \text{ bar, } V_{g \text{ max}}$)	M_{max}	Nm	2231976

 $^{^{1)}}$ Measured at n = 1500 rpm

Axial piston pumps A10VSO series 31/32

- ▶ Nominal size for series 31: 18 to 140
- ▶ Nominal size for series 32: 45 to 180
- Nominal pressure 280 bar
- ► Maximum pressure 350 bar
- ▶ Open circuit

Features

- Axial piston swashplate construction
- ▶ Excellent suction characteristics
- ▶ Low noise
- ▶ Long service life
- ► Versatile range of controllers
- ► Fast control times
- ► Hydrostatic cradle bearings
- ► Low pressure ripple
- ► High efficiency
- Designed to minimize cavitation and suction port flow drops, and improve shaft sealing with case pressure peaks
- ► HFA, HFB, HFC pressure fluid (except Skydrol)

Detailed information:

Data sheet 92711

Product description

The A10VSO variable displacement swashplate pump is usable in open circuit designs. Flow is proportional to drive speed and pump displacement. Swashplate can be used to control displacement of the pump.

Series			31	32
Nominal size			18140	45180
Displacement		cm ³	18140	45180
Pressure	p_{nom}	bar	280	280
	p_{max}	bar	350	350
Speed	n_{\min}	rpm	50	50
	n_{max}	rpm	21003900	1800
Flow ¹⁾	q_{v}	l/min	27210	67.5270
Pump operation			Yes	Yes
Motor operation			Yes	Yes
Performance ($\triangle p$ = 280 bar) at $V_{g max}$ and n = 1800 rpm	P_{max}	kW	15117	38151
Torque (△p = 280 bar) at V _{g max}	$M_{\rm max}$	Nm	80623	200802

¹⁾ Measured at *n* = 1500 rpm

Axial piston pumps A10FZO, A10FZG, A10VZO, A10VZG

- ► Proven A10 technology
- ► Optional through drive
- ► High efficiency

Features

- ► Suitable for variable-speed operation
- ► Designed for start/stop service
- ► Capable of long pressure holding operation
- ▶ Usable as a pump or motor
- ► Mineral oils (HL, HLP) in accordance with DIN 51524, part 2

Product description

As an advanced design of the proven A10 family of pumps, these products are specifically adapted for variable speed drives in energy-efficient systems.

A10 family axial piston pumps are available as fixed displacement pumps in open (A10FZO) or closed (A10FZG) circuits, or as variable displacement pumps in open (A10VZO) or closed (A10VZG) circuits.

Detailed information:

Data sheet 91485

Туре			A10FZO	A10FZG	A10VZO	A10VZG
Nominal size			645 ¹⁾	645 ¹⁾	10180	1063 ²⁾
Displacement		cm ³	645	645	10.8180	1063
Pressure	p_{nom}	bar	315	315	250 (NG10)/315	315
	p_{max}	bar	350	350	315 (NG10)/350	350
Speed	n_{\min}	rpm	0	0	0	0
	n_{max}	rpm	30003600	3000	18003600	3000
Flow ³⁾	$q_{\scriptscriptstyle extsf{v}}$	l/min	967.5	967.5	15270	1594.5
Performance	P_{max}	kW	1.511.25	1.511.25	2.545	2.515.75
Torque	$M_{\rm max}$	Nm	9.572	9.572	17286	17101

^{1) 58} to 63 on request 2) On request

³⁾ Measured at n = 1500 rpm

Accessories

A comprehensive range of accessories is available for your Sytronix system.

Line filters

Line filters ensure that the EMC limit values are adhered to and suppress leakage current generated by line capacitors.

Braking resistors

Braking resistors provide energy dissipation, in the form of heat, resulting from dynamic braking of the drive.

Line chokes

Line chokes reduce the harmonics coupled into the supply grid. As an IndraDrive accessory, they are used to increase the continuous DC bus output and to suppress harmonics.

Power and encoder cables

Power cables are used to connect the motor to the drive unit. Encoder cables are used to connect the feedback encoder to the drive.

Auxiliary components

Accessories for connecting modules, such as the HASO1, include bus bars, fastening materials, etc. Additional items include shielded motor cables for connecting to drive units (HASO2), mounting flange assemblies (HASO7) and commissioning cable (RKBO001).

Detailed information:

Catalog R999000018 (DE), R999000019 (EN)

Pressure transducers for hydraulic applications SUP-E01-SYT-HM20-2X

▶ 3 pressure levels: 100/250/400

► Electrical connection:: plug, 4-pin, M12x1

► Angled plug

Features

- ► Sensor utilizing thin-film technology
- ► Stainless steel wetted surfaces
- ► Enhanced reliability including high burst pressure, reverse polarity, overvoltage and short-circuit protection
- ► Excellent temperature characteristics
- ▶ UL-listed for the US and Canadian markets

Product description

Pressure transducers are used for measurement and control in hydraulic systems. Measured pressure produces a linear electrical output signal. A kit is available including angled plug and cable, and in three standard pressure ranges for Sytronix drives.

Detailed information:

Data sheet 30272

Operating voltage	U	V DC	1636
Output signals	U	V	0.110
	1	mA	420
Pressure range	р	bar	0100/250/400
Accuracy class			0.5
Settling time (10 to 90%)	t	ms	<1
Temperature coefficient	T _c	%	< 0.1/10 K
Fluid temperature range	\mathcal{T}_{Fluid}	°C	-40+90
Ambient temperature range	$\mathcal{T}_{Ambient}$	°C	-40+85
Environmental rating			IP65/IP67
Electrical connection			M12 plug, 4-pin
Pressure port			G1/4

The Drive & Control Company

Bosch Rexroth AG

Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany www.boschrexroth.com

Local contact information can be found at:

www.boschrexroth.com/contact

products are constantly being further developed, no statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

The data specified above only serve to describe the product. As our